12 United States Patent

Lee et al.

US011720373B2

US 11,720,373 B2
Aug. 8, 2023

(10) Patent No.:
45) Date of Patent:

(54) DATA PLANE PROGRAM VERIFICATION

(71) Applicant: Barefoot Networks, Inc., Santa Clara,
CA (US)

(72) Inventors: Jeongkeun Lee, Los Altos, CA (US);
Cole Nathan Schlesinger, Mountain
View, CA (US); John Nathan Foster,
Ithaca, NY (US); Han Wang, San Jose,
CA (US); Robert Soule, Hamden, CT
(US); William Hallahan, Nashua, NH
(US); Steffen Julif Smolka, Ithaca, NY
(US); Mon Jed Liu, Santa Clara, CA
(US)

(73) Assignee: Barefoot Networks, Inc., Santa Clara,
CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 17/537,301
(22) Filed: Nov. 29, 2021

(65) Prior Publication Data
US 2022/0083352 Al Mar. 17, 2022

Related U.S. Application Data

(63) Continuation of application No. 16/022,601, filed on
Jun. 28, 2018, now Pat. No. 11,188,355.

(Continued)
(51) Imt. CL
GO6F 9/445 (2018.01)
GO6F 11/36 (2006.01)
(Continued)
(52) U.S. CL
CPC GO6F 9/44589 (2013.01); GO6F 8/51
(2013.01); GO6F 11/3604 (2013.01);
(Continued)

210

Annotate program

220 JL

Translate program

—

Compute precondition 240a
/ | Simulate program function |

230

240

Venify program

(38) Field of Classification Search
CPC GO6F 9/44389; GO6F 8/51; GO6F 11/3604;
GO6F 11/3608; GO6F 11/3636; HO4L
45/745

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,112,298 A 8/2000 Deao et al.
6,986,130 B1* 1/2006 Boucher GOGF 8/4441
717/150
(Continued)

OTHER PUBLICATTONS

P. Bosshart et al., “Public Review for Programming Protocol—
Independent Packet Processors”, Jul. 2014, ACM SIGCOMM Com-
puter Communication Review, vol. 44 (Year: 2014).*

(Continued)

Primary Examiner — Douglas M Slachta

(74) Attorney, Agent, or Firm — Essential Patents Group,
LLP; Christopher K. Gagne

(57) ABSTRACT

A method for veritying data plane programs 1s provided in
some embodiments. Because the behavior of a data plane
program (e.g., a program written 1n the P4 language) 1s
determined in part by the control plane populating match-
action tables with specific forwarding rules, 1 some
embodiments, programmers are provided with a way to
document assumptions about the control plane using anno-
tations (e.g., 1n the form of “assertions™ or “assumptions”
about the state based on the unknown control plane contri-
bution). In some embodiments, annotations are added auto-
matically to verily common properties, including checking
that every header read or written 1s valid, that every expres-
sion has a well-defined value, and that all standard metadata

1s manipulated correctly. The method 1n some embodiments
translates programs from a first language (e.g., P4) to a

(Continued)

2203

Parsing and Type Checking

2206

22¢

220d

Passivization
Optimization

220¢

Mo

Program fail’
Yes
Trace program faiiure
Qutput program fadure

2400

240d

US 11,720,373 B2
Page 2

second language (e.g., Guarded Command Language
(GCL)) for verification by a satisfiability modulo theory
(SMT) solver.

18 Claims, 11 Drawing Sheets

Related U.S. Application Data

(60) Provisional application No. 62/663,141, filed on Apr.
26, 2018, provisional application No. 62/571,121,
filed on Oct. 11, 2017.

(51) Int. CL
GO6F 8/51
HO4L 45/745

(52) U.S. CL
CPC ... GO6F 11/3608 (2013.01); GO6F 11/3636
(2013.01); HO4L 45/745 (2013.01)

(2018.01)
(2022.01)

(56) References Cited
U.S. PATENT DOCUMENTS

7,200,865 Bl * 4/2007 Roscoeccooennen HO4L 63/20
726/13
7,263,597 B2* 8/2007 Everdell HO041. 47/10
709/201

7,685,570 B2 3/2010 Draine et al.
7,987,390 B2 7/2011 Chandrasekaran

8,387,021 B2 2/2013 Vanoverberghe et al.

8,793,661 Bl 7/2014 Fei et al.

9,419,897 B2 8/2016 Cherian et al.

9,577,924 B2 2/2017 Ko et al.

9,767,284 B2 9/2017 Ghose

9,773,557 B2* 9/2017 Gotocoevvvinnnn. G11C 16/10
10,009,264 B2 6/2018 Hoffmann
10,097,457 B1 10/2018 Srinivasan et al.
10,305,776 B2 5/2019 Horn et al.

10,320,585 B2
10,409,705 B2

6/2019 Koponen et al.
9/2019 Jagadeesan et al.

2003/0217327 Al 11/2003 Ogasawara

2009/0228967 Al 9/2009 Gbadegesin et al.

2009/0248693 Al 10/2009 Sagar et al.

2011/0145653 Al 6/2011 Broadfoot et al.

2012/0060165 Al 3/2012 Clarke

2013/0060736 Al 3/2013 Casado et al.

2013/0346814 Al 12/2013 Zadigian et al.

2014/0237456 Al 8/2014 Monclus et al.

2016/0072769 Al 3/2016 Takuwa et al.

2016/0224460 Al* 8/2016 Bryant GO6F 8/60
2016/0344798 Al* 11/2016 Kapila HO4L 67/10
2018/0367393 Al* 12/2018 Harngja HO04L 41/0873

OTHER PUBLICATTONS

Ryan Beckett et al., “An Assertion Language for Debugging SDN
Applications”, Aug. 22, 2014, ACM (Year: 2014).*

Thomas Ball et al., “VeriCon: Towards Verifying Controller Pro-
grams In Software-Defined Networks”, Jun. 2014 , ACM (Year:
2014).*

Yangyang Wang et al. , “A tool fortracing network data plane via
SDN/OpenFlow”, Feb. 2017, Science China Information Sciences
(Year: 2017).*

First Oflice Action for U.S. Appl. No. 16/022,601, dated May 1,
2020, 31 pages.

Lopes, Nuno P., et al., “Automatically verifying reachability and
well-formedness 1n P4 Networks™, Microsoft Research, Sep. 2016,
13 pages.

Notice of Allowance for U.S. Appl. No. 16/022,601, dated Jun. 29,
2021, 10 pages.

Notice of Allowance for U.S. Appl. No. 16/022,601, dated Nov. 17,
2020, 10 pages.

Ryan Beckett et al., “An Assertion Language for Debugging SON
Applications”, Aug. 22, 2014, ACM (Year: 2014).

Yangyang Wang et al., “A tool for tracing network data plane via
SON/Open Flow”, Feb. 2017, Science China Information Sciences
(Year: 2017).

* cited by examiner

US 11,720,373 B2

Sheet 1 of 11

Aug. 8, 2023

U.S. Patent

QOTA(]

UoTBUNSS(J

LOI

OL(qeq
SIOMIIN
SUTUIAIIU]

[24n31]

E
[ONU0)) o1

SO |
SIOMIIN
a, SUTUDAIINU]

Otl

QDTA(]

90INOY

CO1

U.S. Patent Aug. 8, 2023 Sheet 2 of 11 US 11,720,373 B2

220a
200
\ Parsing and Type Checking
Start 220b
Instrumentation '
210 220¢
Annotate program _ —
220d
220 Passwzzatlon

. 220¢
Translate program
Optlmizatl on
Compute precondition 240a

Slmulate program function

240b No

Verify program Program fail?
Yes

Trace program failure
Output program failure

230

240

240C

240d

‘lIIIHH%IIIII'

Figure 2

U.S. Patent Aug. 8, 2023 Sheet 3 of 11 US 11,720,373 B2

Ay

header type sthoynst T 4
o N . -]

rrsr

" '\ . = b P
B B TR LY ERNS o u N S
; O 5 S L"t#l wt. 'rt. ' -h ‘L'h.ll n-’- LA o :' ! i:'-
+ o, 'I‘|I '.-1‘,.
_..:4. A A DR o A
.- '-:‘ \"u r-."'-'.lu uh""'u'l. n-’- LA o :" ! |':‘|
n i N W R I .
R s A T, ey : L I
A i S e T -.;' ﬁ,h. o u? 5 ""T"‘r:::
S o e O e e, , ~ SRR M
. - ‘ h) -'
" 1
h "
T w ::
"r'_"q l':.
~ #
- " T : \tr. . N A AL " .
N 11& E’d‘ = E - NI 8 RIS I y
? ; ; : Lwomm '.'- i ; R R N e e, n- B .':l. Le e+ S "u
N - +
3 ! R,
= Al
n, [] II-...
nat . by TR et b L~ i, W
Mt ::.'\."-‘ .:"Il'lih"l.l. 0y 'l.li.' 55
:. 1:: 27, |'l"| 1: w3 '+:1: -
-.1.. -:-.'. Ll"i'l |'I."I l"IL'I. l‘_‘- h.lll. 5'!
: - N, L, ¥
T R = I
L LAY “ i s L
S i - m- - S T
R Lk e YOUNIYLRE % D, o
CIE b e o :.' Tyt nw, e o '-"l,-""l .!.
L™ L S
. N
B .
.. - ‘:
- -u
L 2

) - 4 - ‘.‘ 'I 1
l|.,+.'1. h e, 1 . .’..‘.;. :‘q.- ™ .‘ RN ﬂ:.-u‘ ‘:1“' [qt- .‘1_'_11.1::.1 ::u._-,.. ., :.I_II‘ h-:_‘. -.:1 kA
2 Hegdar st SRRt SN 5 B S T SR

i "h. "II [3 .*‘ _'ll
7R3 wLan tan P owlanidioa
' . - - -|_h. i . - " I"T‘ .9 ll_._._. .h.l".".‘:bl.hh'-':l._._. ! .1 T -H':l'..l wh. :'q‘. | R N .1{
+roT [P O N] + 1
¥ PATEST shary i
3 1 5 AL T~ gL S PR e R *
L - .h*n.- T R L -‘.-\.' 3
3 axbract istharnet)
" - T S et e .:"«,TI. = e W ."1..'_\.* "T"‘" .:'. h.*
.:‘--T.' N T . WS o"'l-r "'-r ‘: 1".‘! -L‘! 'h.":'.' .1. Sy 'i“'.' Tll,_"'l'- Pl =" ‘-‘1 '.""‘ "‘"‘"'. ‘:."' ‘:."' 1 1"* "I | "'l".‘:-.‘l. iy -"l: -r‘h;.l.l" ':‘ +:
-hhl.] “-'E.' . K 1-:ﬂ - :‘.‘_. Y '.‘_q‘ o . '.I '=|1 h |‘ L }‘_‘ ,I & = 1“_ iy t.‘_ u . b » -) .'rl Py o n N,
e N 1£. 1] 1.&&- - =t " wm mw mow n,.\ L R L\. ""l.-u UL I AR R N R A w W N L AL I WL L TR R L W T W :ih.‘ "‘h.,.u . +‘
. — .
T i S e M S R - e I e
K N I I . R SR U v S S S S
wm 3 HER IR N TR R - Al NEACTETE TR N S B A WL DR TR
- For oo '
T - “‘. L] I‘t"l"l ! .1. 'ﬁ‘:‘.“ .TF:.\' r n . . L F: 1]
e somEm s wann f Fhanodtabar WL My s
LE Ry A SRR R R R LR e % R w wmwE s Cud o .'.'l*'l.'l,.' P S RN Y :I-
h | L | £ []
' . L n
o SR I & NS
[. a .l._ T iy -i.'-."l'J1. ‘It e L"i.::'.h.'- b wt 1
L 3
- "
2 y
[} . s 1..:
Yt .
N8
- - _h'
. T ";-'
. - . = - o R -
¥ TArSer DLrEs Wian
wlatua aC . . ' -"I. LR e T .‘\....._L__L__L_\. by byt e LY
n ' - v " S
i IC e i . . r SR R w WAL VLR AR Ty X
¥ arbrsct ivian ety
] I R R b Rl M R N ol W Rm s e 'i"'
Bt = 3 R b e v S R el N
.'I.'+.:'l-.. . - L] "d o il-'i'l: W tiaw ouw' L'll.l- $
..
. ..
e %
P R I - ' -, R A ™ mE = 1.": S S e ::I
5 DATSer LRTas wing |
e Nl 3 "'1.*1 PN e e el e e N
)) At et K
- tI *:" 'l-. -I'..I.l-| '.l |l|
o R I T LS 2
5 exbract dvian it
=" : "h"' '|| "'-.1‘ h."I."\r"::':‘i uwt m : "tl'l‘ ..: ls _i"":
. ™, . "m e L w “m) "L)
'1*\1-' . a r » . * T i ...H,"-. w 4T T 7, "y - R ‘Fl. - ‘T H *-i . iy W ",
-L:||I W' K- ﬁ, o 5 fﬂ -:':J. :::.L. - ‘:*. ;:"‘? '.I "ll ;:_\ A, .F:l %"ﬁ ri: b -, . . h_-.._l. +‘1' ‘i‘ﬂ. "-...l""' '.. H’.‘\E ‘L#‘i.':..,h": E ,,.|.
R X 'r. ‘.t‘.ii o B Tt e L ete MR e t‘\ Ao w b 'H ?"I-.' 5 A "h."h."'h.-.l_ -.‘\...'. N TR k L‘t .‘\-'\-' » -
. o . - + . . . - . [="
e a Ty SO ~ ey -
e o N mO R DR W AN O N oy s
L N D T N LT 4.. A 'u-\..."l \.t,.-., I I N - i"
l_'._ -‘“ L] F
L, g R TI. o iy - - n T 'n.'.'ar Co
14 default : inoreas;
i 2 RS L B T R D AR SN
" 2
we'n - N
X :.

Figure 3A

US 11,720,373 B2

Sheet 4 of 11

Aug. 8, 2023

U.S. Patent

11111

N
iy
"

"
5
x
Tay Mgt
. *-.,
s

. l'l"l
" I ale
e AR
. ,‘”‘.xu- o R,
UM LRI =
|.‘ 1
)
o .
I‘_

AR

i“!
M
e
h

i e Y
q':': r
"I

- et i

a .-_._ . -
a “ e
4 4 “ared-
LN RN ”.-..- * .._“
LA e S
it i 2y
”l._..__...._.._.l .-_.-.v._.._.._....._..- ml.-ht.

Ao a . a
walan -.,_......_._,_.. s
. 2 e
- o e
‘“l .-" H-. ”" * .ﬁl

A P A N
ARV YS T En e O~
L

- e atal
.“.“Ii—‘” I.I...IillI. |.1Iii.-_”. ”.‘l-l.‘ul

1.'
N
N
w
"
s
‘I‘l"ﬂ
Oy
w W
H
n
oy
o,
)
L
"
‘..‘
n

.
L]
s
.
L
iy
L] l_
%
L]
L]

"

e

w'n’
P o ulel e
W
ey

¥
N
b

b "a
g
N
iy
e
:-
.,:..
Y

""-.
n

Ta

]

"

R
“n
n

o
o Y
-
E
I R
.
e

.".

b
e

.

oY

‘."

[
"

A

L]

!‘I
-
-
~
“
At e T
e e
NS
"
-~
5
>
-
-
‘q

g
e e

e
.
LCAE

« o
e
‘I. .
Ll
Sl
w
. ;::..“".
U A

L]

+

ll-'1 1.III.]
r T

- r.l . m
-

-

.l...
o
-
-q;'
Ty

~,
2‘\
LY
Y
"

N

33

3

L ~
F/HJEFY N

T

- 4 m.._.,nh ey o o
R RS S S S P fu A 2ogy i
. Telen “a” 1“.“ n.il" -U. -Jri.-_q i -.-.u_-.“t. url..“._-. Inl-...!..-.l. .1...'I_._.tq. l‘_”” ' -ﬂli.-&. !-._.l.. : .-.___ LA
.-..-.._..-.. .-.1...-_.-. A 1 gy 11-_. +._..-_ -_1 -.-.-.l-..q-. Il\. * LR | PR .l+ l._. 1.l..l. --l ll....
- 11 r & - = .._\.! H1 [[] - -_I...i r Ry - .!-. a B
l-. H- N-lrl1 ad r 1.#-.-. .l‘.rlr-. L 1..1.‘. l.‘] .‘II -J.l..+.+ll1 .l-l..—...—..ll .I.—. .-l. H 1‘. |‘ L]
‘..\. o e B Pl SAE N i A " o . L - I e
P L R N Ly B o o LD . S A L "
e \H“ . . 2 s L " ...1..._._.._.__._- o - -.-..._.._ 1_._.-t . iy y + -‘l-.- " £ o-_“- l_.l“.
ra' .l-. ' -.—. .-;.. .- _.11 -I. -!” lIu.._ lni : -_Il -I._. o .-_Iu. -i_..11l..
gy s S R o alaets Lalan . Te S
.l-.._‘..ln -- r .l-.l- ‘-I- ! -_ﬂ o .!l \. .1__..-..- _-____.- A .‘” -.1..... _.l_-.. .._l. rr ql_....-
1.-.l.-.v. .y . tulﬁ i.l-.l.-. .Il.l-.-_-. -L.- . L - -_i__..i.-q-. .I..-“
i vxan ol et S .__.-.L__. s et A e o
* " " a a]] .l‘... El] - 2T
e " Ao s o o by
e L s

o
R

[- 'q_“%

w

>

N

>

L3

¥
-"i. ._."'-:q..-.:'-
ol ey

e

Ny
" 'ﬁ-'i'!-
‘..‘I
A
-h”;:) .
N

RN
&
N .

RN
Y
e

A
-

e e

N “"'-‘3:':. ™
R
A,
R
) - .
EH[EH
.

RO
§
SR

T
e
"I L]

) :‘."i [
Yy

15‘}‘
N2
HOLID
ety
L
‘:‘-
-,::"-.
N R
SRELDE
.,."-.":: "-:h-

%
L%
L
wah
ae
N

R
- SASRE SN
s
ﬂ

.
'

roal -

LI L B

.. . .

|.II .1.1‘.—.1..

a P .
LT T .

- 11 1‘. T [] L - H. 1o -.. []) ._ r " L ..- [‘1. 1.. 1 ‘. 1. 11 iy ‘-1‘-1-. LI ..1.- r .. - o .‘ r 11 ..1) r 1. 'w - ‘1‘-1.
e N A v N R i SR A ATV TR N O, < S - N R IR o S S 2 < S SRV SR AXC R, X ST oo 3 \.\

S, N S sA ' , WA A AT R P N .,..\\ Ana R OO R R S SRS S S ¥ SR SV
QU A GO O A el % et g o % QS OIS S COTIEL S O O L T S G SR R 4

Figure 3B

U.S. Patent

R .,
Vot e mn S e T m Ty R Eh] - - v, n=
S T3 I TR T N RN ﬁ e N :i m : ‘.-. AV T N
g En.t‘ s :5- 1.:: o g, '{_:t' mt I._::" :11:.:'_-'.-‘1_:- " Gl o e b t "N t'\-‘l '."'-* :

Aug. 8, 2023 Sheet 5

L] l"i 'I."l"l‘. 'h-l'l. I'I. |.1'I. 4 ~1.i_. 'l'I. r e '|.'t_. . ‘. T -1.1‘_\. l"' :‘i.'\,'. 'l." ;.l'h l.,-T i'é: - _.'l.".l e T N | L8 1 4

* =h ' | ! T W S ' .h“. AR W

':"-:1 1‘.\1" e l"ill ‘LI."'I ':' W '.I."I..h :‘:‘l' 1"l::- . :'ft'.-.:h:"u ‘u_:—. i #1 -wc. :‘-..1.- :2 l-‘l'#'l _-:'1. e :'?:T- e
mna L

1111111
111111

. ":.-*..-".‘"

L i e .
g % : . n
. L - - B ~ Tu
L u:h' ey L . d .'. B T :::' :-::‘;‘ "u A A "ﬂ‘. ‘1'.. b) |.."'1'I.
. " - T : ! .. . " =] " * *
e ey "l.+ m ﬁ- t_ 'B‘ 'L L"rlﬁ. '-.':-h. . :‘::’ a‘h“ :'1- :::L L-._'!l. - "'h.'l:' ‘hn‘t wd : "h*l-"l.
‘ .I .‘l +| ' q
"'- '~‘ ‘l... """I'" TR (T, -ﬁ'l.. ~r"h"' . "q.-_: L AT e el E‘E.E oy -_,F:_ “{ - "H. b RIS,
! e - . . InTnTeTaTn e
DUERAR R R N S R SRR - & o 2 R nT..-..x::.w. ST AP
. . e . . .
- A e " .. ™ T e - "
DY {res .;ig TR R wvAh I T eme W Zpawad
AR +RE R 'q,; R "l . "'r-."\ "au™ -‘-hq':"h '\1 * - % . Mt WA T
. ._. LN . ". . .
T“'I L N T S e rmr - -~ o f,\ """""
o IR e TR I e e R & '1 m S i ;:-L- T WY RRNER
I...:_* L] '-...1 '!.r P 1|.|.I|..'- ln..-\....ll. _|||_r-|_ I...-I.."' ',"\Jl.i*_- LI N L ""l.\.-l "n....-\.il '.'q.i-. N
b e . . >
- e . . " ..
- .'l. l.'i.' ’ [l 1 ‘b . .I "L ‘B imeaoaana .:‘l|I LY 'l
(5P fpeads {deosed I8 s 1 ang
e L - rL '-.'v-'n. 1-11- Lt ‘u*‘ :'1- w e . i "u"t Ih. I "hi"'l.

'

of 11

US 11,720,373 B2

e B
wr . Tmm - 1|
-3
iﬁeﬂ ;: ~:=,.‘--“- 3 "“-'*: R RRRRRASI O -
.Ea "' .I.1"I "l'l "'-1.'1 "'l."'. 'l1 : h.'llul -,: - 1:-" E
Ly - -
L3 1._.|- l"
SRR QR NS e Taey S
LR '-.,.'l_'- L LI W II ¥om, l.,.-\.. L L VN R L I"'|.-'..,.'-4\‘_ ""1.-1.'.."!..,.1..1 c_wm b
. :'q.:""q . L . T . . ="
S R o 5
WL {3 N B T A N S SN
EER LR) iR WE oL L.
‘I l" “i .l II{
R R R A TR LR LA R R T
Wk = !:;" "'L " ! i:-,:' N h.'s-.,.-l.' +I|.,.'l|}:ii:.?. Lo] h::u :."'..,.'l' 'n.'\-..il.. '.'l- H"
e : B i, -
. Y -'4 LY .
T Lm L b - it Y e aan ')
oAl N LT WLy e LAV .
hﬁ a[ﬁ‘ﬂ "',.' "'lrl'-. |.1"h'l 'l'l ":1.'1 1'.'lln."'u 'l‘ : [T .'n. 1:'!- -B

Fioure 4

ra | i

Ll Bkttt A it

S s

+ 'i" f b T T B Y

. -

Pt sl

Lkt kol

AT

ST

US 11,720,373 B2

Sheet 6 of 11

Aug. 8, 2023

U.S. Patent

9 24n3s1,J

DIDp UCLOY (X ‘D ‘1)pipp u0110D
Uuo1IoYy (1)uoijop
SASSIA (7)ss11u

SIH (1)1y
papAvIPIIM (1 “2)p4voppim
SpDaY (¥ ‘1)spvau
SaYIDAY (1)sayova.

T =l 2
3
17
]

SUOISSIIAXT
SADY
SUOT}OY
SIqEL

U.S. Patent Aug. 8, 2023 Sheet 7 of 11 US 11,720,373 B2

= . -.I. . ‘) . .
L] ' ;- s - ‘{“ oy) ' Yy iy A Y ey L T n ! L e " *u'
: header tyge odv sombis, g §
] - . 1 . i"_.'_.'_. ._-.ll_ .H‘. ' - I"_.'_.'i.l-l - 1 .";'_._":'_Ii‘ .-.‘ +L [I 8 .‘ "h.'h .'ll"h.'ll"_.'_.'_..‘ll'l '11.
) ' " -.-q; .. _‘.
Py SonS IR o
i P 5 R N
. -‘l,.) T . . ‘q;
~ R * o
" =k w "llt - 1:'& .’H
i" 'ﬁ. l-'."l
“:) |Il y .‘: i. L ﬁ ‘-I 3 h'r
N aELLQ) o -j‘ &
-';‘ .El’ o -"-': LY +\‘:': q \-'.; -
-l,: “m .'La ""‘h':;‘_ ‘h} O om . "
R i e T - I T . T
" - n n
" v R AW 4 i .) + a
" L e Rt *-: : o
e e Tmom owow m u-\,t"__'__'_‘,'\.'l.- it v B
i .
- .
) ::
]
am - ri'j - - ‘ ‘aj'-_ ; - f-'-"";-:q,;-}' o T 1"..- ';E o~ . Ty o - > #‘;.:‘H\;Er‘h‘ -E: ~ . e
-I-% ﬁ& _)E‘l. & . 1_‘_& * : 'hls L 'q".'-:l "I"l_-.11 . - :h.""h.". - |".I ‘ufi_ - l'-,:l e LY b.'-}- ' ' :_q'\."l -
- N i :H'.-_ i . . ._._._.;:rv. . " Y 3 Hl'h’-'liq.""lhl'l i G b IR '_._._.}‘1- % ._._._.h"h""h.'h""‘h . Ao Teeh :_t
oAt
T . i
il Y - -
o : v - ¢ ‘ e
'y . - + !\: o " IR Ty W .i..._'l..'_ T T e N
n 'E.E 1:4"31" . R S Y SR . N
W' : ol h L- -#1 -y .h .'h.":.l. -i'l'-:_-il-i:"l..‘lnl!"l: -t'u"-_._._.':‘mi '.'hl"l. ::I'\"- t. ‘:" :'n._l
. M iy X, e St . L ‘. e Y S N " M .
b w A NE LR % B RN ., ™ (3 1.'_‘" x, n L T Ay) . - ".-‘ "
e WS LW T TR AL L R oSy, o nat,, o an s
L T e wWT O WW_ _..'}.. ...L'_"_‘"I-_'I._T LR S N R v *_'_"_"7{' y, oy [] S, R T, Sy m vy L] L '!-‘!-'!T'l:"h R iy _mm ’. [WY _! }
WL N A= L B - ‘o - _ -t T .) > .]) et R - T . T
v TSN WY T T A 0 MV WagRE R IIee i WO TR s Bt RN S R S A . & B DG S S
:‘-i..- .'ll--.'-.‘l-j-' :h.;l..._ —n. ams ‘3 .;-"-"-11"1‘.' L '1..I1..'. L RN T "'I,' '.'_.'_.i:.:-.‘q ‘uw 1.'_.'_.'_':'1.{?"1..1" ,'.'u“:.‘_-u'q'.‘*b- I'i" I- ..'_.'_.“_.:'l."l "'lli" 'l.ll'h'n. ':l"ll'i '-"-1_'-'.';“' s;' "'-" 'uli'h.'l.‘h'-i"l'.-"u.-h’- :I T ame ':'_'h‘l. " : :..' o 13 .::" |; "IE*
. . A :.'l. Ly . L -q ﬂ.l_ I|,.--- o - s . n - . - ‘r. L ':. .:I n RS .
) L T U Y N LR] LI e LY g R L LN . T om CAM T LY IR TE T n . n o, L IR TR T A L N K % B N, RS : - L ,
L ThiStamy oA TR R Uy N L T N I T Ay N . R IR R E R
i on e o kot LR A R L R N o "-"'-"-"'-':h.t‘ -~ "‘u""__‘__'__'lh. ww e i wmr mew 'r._'_'__'__'_lh_lu..'l LSRR '..ﬂ.t.'.r.,i_l__'__'__'lll..ll..' .'F IS AT R L Y W R - N il = 1:| N L) ,.h
A N M - £ a - S - . o w .
o R S 5 TS S, 'u houn SN e T A L B L VR T AL W A T I "I i I
' .\‘h'l'q I.\"ll} - T‘l . * M ' 1 ‘l.-'\ tl.‘.'i -y *] LN ".'-rui-\l‘ . O = '“I‘Fuh [["-‘.‘l i Y 1 "‘i
Y » P N . [N f Y . N . el B L .'q'h . k0 - 4 h"i ' 1 "I*q -
Wt I T T S A T L 'h.‘r-':':-u R W g T ":" by [\ DR BT \i'q"r:-. m" ":-':‘t e 1'&-“'-*-"-!1: " Luta :" f‘.
' ' 'hl-- .I"l"l“'l-l - ' l"l"l"l. l."l"l"l_ - ' - |+'l"l"l1-| ' - ' - LI LY -

S o

- .

.
-,:.

Figure 7

u%:w......v,.

US 11,720,373 B2

=

Yo

. d/ V0Ol 8§——» . .
= 908

Lo

3

= 7 S|dw asied

72

e [sydur asied
-

e .

- G08

0 _

m..w_ sidw osyed
<

jPuRye asied

PO8 09

U.S. Patent

U.S. Patent Aug. 8, 2023 Sheet 9 of 11 US 11,720,373 B2

Qle/x]

wip(cs, wip(cy, O))
wlp(aj Q) AN ‘t«t’lp(tg, Q)
aflp(ass:ume(ﬁ’) Q) P=(

wlp(assert(P), Q) PAQ

E
b]
g2
-
T
Y
S
o N |
h:? :
-
“w”
= {l= il >

Figure 9

US 11,720,373 B2

Sheet 10 of 11

Aug. 8, 2023

U.S. Patent

NI
Sue[d vIe

0t01

eledg
UoneIngjuo))

¢COl

01 24ns1.]

10011
JUbTd
[01U0))

weIsoxrd
poqidwo)

¢ 101

19duron)

wIeIsord
POLJUIOA

Il "OIA

Ovl1

US 11,720,373 B2

SOl OLLI1

_ _ S)JTU

-

-~

=

-

3

=

72

¢ GOI1l1

—

g

<)

on

=

-«

SAITAQ(T INdINO \MMMMMA

~N

o

Qo
=
-l CCl1
S. P11
-

J3BIOIS

Gell

O¢cll

INOHY

0011

Us 11,720,373 B2

1
DATA PLANE PROGRAM VERIFICATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 16/022,601, filed Jun. 28, 2018, which claims
the benefit of U.S. Provisional Patent Application No.
62/663,141, filed Apr. 26, 2018 and U.S. Provisional Patent
Application No. 62/571,121, filed Oct. 11, 2017. The entire
specifications of which are hereby incorporated herein by
reference in their entirety.

BACKGROUND

Recent progress in the formal methods commumnity has
dramatically lowered the cost of verification. Researchers 1n
other arcas have demonstrated that 1t 1s possible to verily
complex software systems including compilers, operating
systems, databases, distributed protocols, etc. A number of
network verification tools have been built in recent years
that provide a way to automatically verily data plane and
control plane algorithms with respect to formal correctness
specifications. Logic 1s highly eflective for modeling and
reasoning about networks—the classic techniques that were
originally developed 1n the context of general-purpose pro-
gramming languages over 50 years ago can be readily
applied to networks.

Current tools are based on partial or 1dealized models of
the network and only a few tools handle stateful devices
such as load balancers or firewalls. In practice, 1t 1s diflicult
to integrate multiple tools to verily cross-layer properties, or
to extend them with new functionality. Furthermore, while
existing tools tend to focus more on short-term goals such as
identifying bugs in existing networks, fundamentally chang-
ing the way that networks are built has the potential for
greater long-term 1mpact, such as methodologies for build-
ing networks that are guaranteed to satisiy end-to-end per-
formance, reliability, and security properties or even to take
a high-level description of the mtended network behavior
and systematically map it down to an eflicient implementa-
tion, proving at each step that the generated program faith-
tully realizes the semantics of the original description.

BRIEF SUMMARY

A method for verilying data plane programs 1s provided in
some embodiments. Because the behavior of a data plane
program (e.g., a program written in the P4 language (a
domain-specific language for programming data planes)) 1s
determined 1n part by the control plane populating match-
action tables with specific forwarding rules, 1 some
embodiments, programmers are provided with a way to
document assumptions about the control plane using anno-
tations (e.g., 1n the form of “assertions™ or “assumptions”
about the state based on the unknown control plane contri-
bution). In some embodiments, these “assertions” and
“assumptions” about the state of the program or a variable
are added by programmers as annotations. In some embodi-
ments, annotations are added automatically to verily com-
mon properties, including checking that every header read or
written 1s valid, that every expression has a well-defined
value, and that all standard metadata 1s manipulated cor-
rectly. In some embodiments, control plane invariants are
synthesized automatically.

The method 1n some embodiments translates programs
from a first language (e.g., P4) to a second language (e.g.,

10

15

20

25

30

35

40

45

50

55

60

65

2

Guarded Command Language (GCL)). The translation 1n
some embodiments allocates state for each header and
metadata 1 the program written 1n the first language and
then translates each element (e.g., in P4 each parser, action,
and control) into a top-level procedure. Table applications
are ftranslated into a non-deterministic choice between
actions declared for the table 1n some embodiments. A
“no-op” action 1s added to the actions declared 1n the table
in some embodiments to indicate the possibility of a miss 1n
the table. In some embodiments, types are assigned to each
expression and each expression 1s cast into the appropriate
type (e.g., converting between Boolean values and bit val-
ues, adjusting widths, adjusting signs, etc.)

Additional state information 1s introduced 1n some
embodiments to record the sequence of match-action tables
used to process the packet. These traces enable formulating
assumptions about the control plane when reasoning about
data plane behaviors. In some embodiments, this extra
“zombie” state, captures behaviors that are managed by the
control plane (i.e., the “brains™ of the network. An important
property of zombie state 1s that 1n some embodiments 1t 1s
only relevant to verification and 1s completely independent
of the genuine state of the program. Hence, 1t can be safely
erased without changing the packet-processing behavior of
the program.

To instrument a program with zombie state, some embodi-
ments define a new metadata instance to record traces, with
fields for each table in the program, and add extra statements
at the start of each action to record the table and action that
were executed as well as the data read in the match key.
Because actions may be invoked from multiple tables, some
embodiments specialize each action to a particular table.
Some embodiments rewrite predicates such as “hit(t)” and
“action(t)=a” into equivalent predicates formulated 1n terms
ol zombie state.

After translating the program into the second language, a
predicate that captures the weakest constraints on the nitial
state to ensure that no assertion will fail 1s computed 1n some
embodiments. Once the weakest constraint predicate (e.g., a
weakest liberal precondition) 1s computed 1t can be checked
using a satisfiability modulo theory (SMT) solver.

For longer programs some embodiments employ addi-
tional optimizations before computing the weakest precon-
dition. In some embodiments, constant folding, and dead
code elimination are used to streamline the translated code.
Additionally, some embodiments remove code relating to
the zombie state for programs that do not require control-
plane assumptions. Memorization 1s used in some embodi-
ments to reduce the blowup produced by naive inlining in
which all procedure calls are replaced by the code for that
procedure. In some embodiments, memorization exploits the
fact that certain procedures are performed in particular
orders (e.g., a P4 program for a switch executes a parser,
followed by an ingress pipeline, followed by an egress
pipeline) and verifies the later stages first and memorizes the
carlier verification results to avoid redundant verification of
the later stages along every branch of an earlier stage (e.g.,
avoiding evaluating the ingress pipeline for each of a
number of diflerent types of headers that can be parsed for
which a parser calls the ingress pipeline).

The algorithm for computing the weakest pre-conditions
(predicate) 1n some embodiments 1s exponential in the size
of the program in the worst case. The blowup results from
the cases for assignment, which substitutes an expression for
cach copy of a variable 1n the predicate, and for choice,
which contains two copies of the post-condition. In some
embodiments, an alternative algorithm 1s used that generates

Us 11,720,373 B2

3

predicates that are only quadratic in the size of the program.
The algorithm converts programs into “‘passive form”
(which 1s similar to single-static assignment) where every
assignment 1s replaced with an assumption about the state of
the program at that point.

In addition to using the method to verily single programs,
some embodiments provide a method to test the equivalence
of two programs. In some embodiments, the programs are
compared based on weakest pre-conditions of individual
procedures. Weakest pre-conditions for procedures at certain
levels of the program (e.g., only a top level and a first nested
level of procedures) are compared 1n some embodiments.

The preceding Summary 1s intended to serve as a brief
introduction to some embodiments of the invention. It 1s not
meant to be an introduction or overview of all mventive
subject matter disclosed in this document. The Detailed
Description that follows and the Drawings that are referred
to 1 the Detailed Description will further describe the
embodiments described in the Summary as well as other
embodiments. Accordingly, to understand all the embodi-
ments described by this document, a full review of the
Summary, Detailed Description and the Drawings 1s needed.
Moreover, the claimed subject matters are not to be limited
by the illustrative details 1n the Summary, Detailed Descrip-
tion and the Drawings, but rather are to be defined by the
appended claims, because the claimed subject matters can be
embodied in other specific forms without departing from the
spirit of the subject matters.

BRIEF DESCRIPTION OF FIGURES

FIG. 1 1llustrates a programmable network forwarding
clement for which programs are written that can be verified
using some embodiments.

FIG. 2 illustrates a process for verifying a program in
some embodiments.

FIGS. 3A-B give an example P4 program that 1s used as
a running example to illustrate the main features of the
language.

FIG. 4 defines a set of annotations for the runming
example P4 program that are suflicient to make verification
succeed.

FIG. 5 illustrates an example of Guarded Command
Language (GCL), an imperative language with non-deter-
mimstic choice.

FIG. 6 defines syntax for the additional expressions that
can be used 1n control-plane assumptions.

FI1G. 7 shows the declaration of the zombie metadata and
the instrumented version of the nop action in the runmng
example P4 program.

FIG. 8 provides a graphic depiction of a multiplicity of
procedure calls for an exemplary P4 switch program that all
end up calling a single ingress pipeline.

FIG. 9 gives the formal definition of the predicate trans-
former semantics for GCL, which 1s also sometimes called
weakest preconditions.

FIG. 10 1llustrates an embodiment 1n which a verified
program 1s provided to a compiler that compiles the program
and sends the compiled program to a control plane circuait.

FIG. 11 conceptually illustrates an electronic system with
which some embodiments of the invention are implemented.

DETAILED DESCRIPTION

FIG. 1 1llustrates a programmable network forwarding
clement that executes programs verified some embodiments
of the invention. FIG. 1 illustrates an example of a forward-

5

10

15

20

25

30

35

40

45

50

55

60

65

4

ing element 100 with a programmable/configurable data
plane circuit 120. The forwarding element 100 forwards data
messages within a network 110 based on a program provided
by a user, in some embodiments. The program, 1n some
embodiments, includes instructions for forwarding data
messages, as well as performing other processes such as
firewall, denial of service attack protection, and load bal-
ancing operations. The forwarding element 100 can be any
type of forwarding element, such as a switch, a router, a
bridge, eftc.

In FIG. 1, the forwarding element 1s deployed as a
non-edge forwarding element in the interior of the network
to forward data messages from a source device 105 to a
destination device 107. In other cases, this element 100 1s
deployed as an edge forwarding element at the edge of the
network to connect to compute devices (e.g., standalone or
host computers) that serve as sources and destinations of the
data messages. As a non-edge forwarding element, the
forwarding element 100 forwards data messages between
forwarding elements 1n the network (1.e., through 1nterven-
ing network fabric 110), while as an edge forwarding
clement, the forwarding element forwards data messages to
and from edge compute devices to each other, to other edge
forwarding elements and/or to non-edge forwarding ele-
ments.

As shown, the forwarding element 100 1includes (1) a data
plane circuit 120 (the “data plane™) that performs the for-
warding operations (executes the program) of the forward-
ing element 100 to forward data messages received by the
forwarding element to other devices, and (2) a control plane
circuit 125 (the “control plane™) that configures the data
plane circuit. The forwarding element 100 also includes
physical ports 112 that receive data messages from, and
transmit data messages to, devices outside of the forwarding
clement 100. The data plane circuit 120 includes ports 115
that recerve data messages to process and to transmit data
messages alter they have been processed. Some ports 115 of
the data plane 120 are associated with the physical ports 112
of the forwarding element 100, while other ports 115 are
associated with other modules of the data plane 120.

The data plane includes several configurable (1.e., pro-
grammable) message-processing stages 132 that can be
configured to perform the data-plane forwarding operations
of the forwarding element 100 to process and forward data
messages to their destinations. These message-processing
stages perform these forwarding operations by processing
data tuples (e.g., message headers) associated with data
messages recerved by the data plane 120 1n order to deter-
mine how to forward the messages. The message-processing
stages 1 some embodiments include match-action units
(M AUSs) that try to match data tuples (e.g., header vectors)
of messages with table records that specily action to perform
on the data tuples. In some embodiments, table records are
populated by the control circuit 125 and are not known when
configuring the data plane to execute a program provided by
a network user.

The configurable message-processing circuits 132 are
grouped 1nto multiple message-processing pipelines 128.
The message-processing pipelines can be ingress or egress
pipelines before or after the forwarding element’s traflic
management stage that serves as a crossbar switch that
directs messages from the ingress pipelines to egress pipe-
lines.

Each pipeline includes a parser 130, several message-
processing stages 132, and a deparser 134. A pipeline’s
parser 130 extracts a message header from a data message
that the pipeline receives for processing. In some embodi-

Us 11,720,373 B2

S

ments, the extracted header 1s 1n a format of a header vector
(HV) that 1s processed, and in some cases modified, by
successive message processing stages 132 as part of therr
message processing operations. The parser 130 of a pipeline
passes the payload of the message to the deparser 134 as the
pipeline’s message-processing stages 132 operate on the
header vectors. In some embodiments, the parser also passes
the message header to the deparser 134 along with the
payload (1.e., the parser passes the entire message to the
deparser).

When a pipeline 128 finishes processing a data message
and the message has to be provided to the tratlic manage-
ment stage (1n case of an ingress pipeline) or to a port 115
(in case of an egress pipeline) to be forwarded to the
message’s next hop (e.g., to 1ts destination compute node or
next forwarding element), a deparser of the pipeline 1n some
embodiments produces the data message header from the
message’s header vector that was processed by the pipe-
line’s last message processing stage, and combines this
header with the data message’s payload. In some embodi-
ments, the deparser 134 uses part of the header recerved
from the parser 130 to reconstitute the message from 1ts
associated header vector.

FIG. 2 illustrates process 200 that 1s used 1 some
embodiments to verily program (e.g., a program written 1n
the P4 language) to be executed by a data plane (e.g., after
being configured by a control plane). FIGS. 3, 4, and 7
provide a simple exemplary program written 1n the P4
language and additional elements used to implement the
process 200 in some embodiments. Process 200 begins (at
210) by annotating a program (e.g., the program 1llustrated
in FIG. 3). In some embodiments, because the behavior of
a data plane program (e.g., a program written in the P4

language) 1s determined in part by the control plane popu-
lating match-action tables with specific forwarding rules,
programmers are provided with a way to document assump-
tions about the control plane using annotations (e.g., in the
form of “assertions™ or “assumptions” about the state based
on the unknown control plane contribution). In some
embodiments, these “assertions” and “assumptions™ about
the state of the program or a variable are added by program-
mers as annotations. In some embodiments, annotations are
added automatically to verity common properties, including
checking that every header read or written 1s valid, that
every expression has a well-defined value, and that all
standard metadata 1s manipulated correctly. In some
embodiments, control plane invariants are synthesized auto-
matically.

FIGS. 3A-B gives an example P4 program that illustrates
aspects of the invention. P4 1s a declarative language for
programming network data planes organized around a small
number of domain-specific abstractions: headers, parsers,
tables, actions, controls, etc. The example P4 program
presented 1 FIGS. 3A-B implements the logic for decap-
sulating virtual local area network (VLAN) tags at the last
hop and was lifted from “switch.p4,” a program that imple-
ments all of the functionality found on a conventional
fixed-function device in P4, including Ethernet switching, IP
routing, access control, tunneling, etc.

FIG. 3 A 1llustrates the beginning of a program. The first
tew lines of the program define types 305 for the headers
used 1n this program (lines 1-15), and declare istances 310
of those types (lines 16-17): one Ethernet header and a stack

of up to two VLAN headers.

Each header instance 310 1s
iitially invalid, but can be made valid by the parser 315,
which executes a simple finite state machine to extracts bits
from the packet and copy them into the corresponding

10

15

20

25

30

35

40

45

50

55

60

65

6

header instances (lines 18-36) (e.g., each state may extract
bits out of a packet header and copy them into an instance
before transitioning to the next state). Instances, 1n some
embodiments, are statically allocated and globally acces-
sible. In addition to the instances explicitly defined by the
programmer, there 1s also, in some embodiments, an implicit
instance for standard metadata (e.g. standard_metadata) that
keeps track of information such as whether the packet
should be dropped, mirrored, or forwarded out a physical
port.
FIG. 3B illustrates additional parts of the program. Note
that after parsing, one or both of the VLAN instances may
be invalid, depending on the value of the Ethernet instance’s
Etherlype field. Next, the packet 1s processed by ingress
control 320 (lines 58-61), which uses the rules 1n the decap
table 325 (line 59) to match the validity bits for the VLAN
istances and either apply one of the specified actions 330
(1.e., remove_single tag 11 the packet has a single VL AN tag,
remove_double_tag 11 the packet has a double VL AN tag, or
a no-op 1i the packet misses). Each action 1s defined 1n terms
of an imperative block of code that modifies some of the bits
in the packet using built-in primitive actions such as “modi-
ty_field” and “remove_header.” The rules in the table are
populated by the control plane, which 1s independent of the
P4 program 1tself.

There are a number of errors that can arise when execut-
ing a data plane program. Some errors are triggered by
violations ol general safety properties that all data plane
programs should satisty. For example, no program should
attempt to read or write an invalid header, which produces
an undefined result. Beyond header validity, there are sev-
cral other basic safety properties that are critical for ensuring
that programs have consistent and portable behavior. These
properties include ensuring that header stacks are only ever
accessed within statically-declared bounds, that arithmetic
operations do not overtlow, and that the compiler-generated
deparser emits all headers that are valid at the end of the
egress pipeline. Because these properties can be checked
using simple, local, and general tests on program state, in
some embodiments, we can automatically annotate pro-
grams with appropriate checks, and veniy them without
requiring program-specific assertions. Other errors are spe-
cific to the logic of individual programs. For example, the
intention in the code illustrated 1n FIG. 3 1s to remove all
VLAN tags. Both kinds of errors can be detected using
logical assertions over the state of the program—i.e., the set
ol header and metadata instances. FIG. 4 illustrates exem-
plary control plane annotations in the program of FIG. 3.

FIG. 4 illustrates a set of annotations for the exemplary
program ol FIG. 3 that are suflicient to make verification
succeed. These annotations (indicated by “(@pragma’) state
that the control plane must 1nstall rules to ensure that every
packet hits in the table (line 1) and that the “nop” (lines 2 and
3), “remove_single_tag” (lines 4 and J3), and “remove_
double_tag” (lines 6 and 7) are only applied to packets 1n
which the corresponding VLAN i1nstances are valid.

Other programs may define other header types, actions,
and tables. For example, a firewall program, in some
embodiments further defines an internet protocol (IP) ver-
sion 4 (IPv4) header type (e.g., 1ipv4_t). The 1pv4_t header
1s defined, in some embodiments, by the following set of
fields: pre_ttl:64, ttl:8, protocol:8, checksum: 16, src_addr:
32, and dst_addr: 32. Additional parser functions are defined
for 1pv4_t header types (e.g., 0x800: parse_1pv4 (indicating
that i1f a Ethernet type 1s IPv4, an IPv4 header type should
be parsed). A firewall program, in some embodiments, also
specifies a unique set of actions (e.g., allow, deny, drop, nop,

Us 11,720,373 B2

7

and rewrite) some of which accept arguments and include
turther actions (e.g., rewrite accepts as arguments “addr”
and “port” which are mput as arguments to modify_field
actions for 1pv4d.dst_addr and standard_metadata.e-
gress_spec respectively). A firewall program, in some
embodiments, also includes additional tables such as an
access control list (ACL) table and a network address
translation (NAT) table.

Process 200 translates (at 220) the program (including the
annotations) into an imperative language with non-deter-
ministic choice (e.g., Guarded Command Language (GCL)).
FIG. 5 illustrates an example of variables, expressions,
predicates, and commands 1n GCL. Assignment substitutes
the expression for the variable in the postcondition, while
sequential composition threads the postcondition through c,
and c,, and non-deterministic choice computes the conjunc-
tion of the weakest preconditions for ¢, and ¢,. For assump-
tions and assertions, which, in some embodiments, handle
annotations provided by a user. Assumptions produce an
implication from the formula being assumed to the postcon-
dition, while assertions conjoin the formula to the postcon-
dition. As discussed below 1n relation to 230 and 240, the
weakest precondition for a P4 program 1s given by wlp(c,
true), where ¢ 1s the translation of the P4 original program
into GCL. In some embodiments, the translation handles a
tull language (e.g., a P4 language including parsers, con-
trols, tables, and actions, as well as parser exceptions, parser
value sets, action profiles, checksums, registers, meters,
etc.).

In some embodiments, the original language (e.g., P4)
lacks a formal semantics such that the language specification
1s generally well-written, but the precise meaming of a
number of constructs i1s not clear. For example, the P4
language lacks a static type system wherein the meaning of
arithmetic expressions such as “x+x” are not always well-
defined: depending on the bit width of “x,” 1t might either
evaluate to “2x” or to a value less than x 1f the addition
overtlows. Worse, 1f X 1s a control-plane-supplied action
parameter, then 1ts width 1s arbitrary. Similar 1ssues arise
with expressions involving saturated and signed values.
Thus, 1n some embodiments, translation comprises parsing
and type checking (at 220q) as a first phase of the translation.
In some embodiments, parsing and type checking 1s per-
formed as a P4v front end operation. Translating the pro-
gram 1nto the imperative language with non-deterministic
choice (e.g., GCL) as above avoids these 1ssues. Addition-
ally, using a translation into the imperative language with
non-deterministic choice (e.g., GCL) allows programs in
multiple languages to be handled by the same back-end
verification code with appropriate coding of the front-end
translation code.

FIG. 6 defines syntax for the additional expressions that
can be used 1n control-plane assumptions. The expression
reach(t) 1s set to 1 1f the execution reaches an application of
t. The expression reads(t, k) 1s set to the data-plane value
read by t identified by k. Similarly, wildcard(t, k) evaluates
to 1 if the value 1dentified by k 1s matched against an all
wildcard pattern. The expressions hit(t) and miss(t) evaluate
to 1 1f executing the table hits and misses respectively.
Finally, the expression action_data(t, a, x) returns the value
of the action data for parameter x 1n action a.

Control-plane assumptions, 1n some embodiments, are
formulated as symbolic constraints on the data-plane execu-
tion—1i.e., there 1s no need to specity the precise forwarding,
rules that will be installed at run-time. More complicated
assumptions may be written that capture conditions 1nvolv-
ing multiple tables. For example, any of the following

10

15

20

25

30

35

40

45

50

55

60

65

8

assumption can be formulated (1) that 1f table t hits, then
table u must also hit. (2) that 11 table t executes action a, then
table u will execute actions b or ¢. Multi-table assumptions
are used 1n verifying properties of certain programs (e.g., 1n
veritying switch.p4 to rule out cases where a packet classi-
fied as IPv4 1n a table early in the pipeline 1s processed 1n a
later table using actions for IPv6 packets). Assumptions, 1n
some embodiment, are inserted 1n a program by a user

betfore translation (at 220) as extra ghost state to keep track
of which tables and actions are executed. In some embodi-
ments, the ghost state 1s translated into assumptions and
turther assumptions are icluded as part of an mstrumenta-
tion operation 2205.

In some embodiments, the translation (at 220) also
includes an instrumentation (at 2206) that augments the
program with additional “zombie” state information that
keeps track of information about the execution of match-
action tables and actions at run-time. These traces enable
formulating assumptions about the control plane when rea-
soning about data plane behaviors. In some embodiments,
this extra “zombie” state captures behaviors that are man-
aged by the control plane (1.e., the “brains™ of the network).
An 1mportant property of zombie state i1s that it 1s only
relevant to verification and 1s completely independent of the
genuine state of the program. Hence, 1t can be safely erased
without changing the packet-processing behavior of the
program.

FIG. 7 depicts the declaration of zombie metadata and the
istrumented version of the “nop” action in reference to the
program depicted in FIG. 3. FIG. 7 1llustrates the creation of
a new header type “_p4v_zombie_t” and the fields of the
header type (lines 1-8). A new metadata instance 1s also
defined to record traces, with fields for each table in the
program (line 9). Extra statements at the start of an action are
also imtroduced to record the table and action that were
executed as well as the data read in the match key (lines
12-15). Because actions may be mvoked from multiple
tables, some embodiments specialize each action to a par-
ticular table. Finally, predicates such as “hit(t)” and *““action
(t)=a” are rewritten 1nto equivalent predicates formulated 1n
terms of zombie state.

More generally, for a given source program defining an
action “a” and table “t:

action a(x) {
modify_field(m.g, x);

h
table t {

reads { m.fiexact; }
actions { a;a}
h

apply (1);

the P4v front-end generates the following instrumented
program:

1;
m.{;

_pdv_zombie.reach_t :

_p4v_zombie.reads_t :

{ /* Code for miss */
_p4v_zombie.hit_t := 0; }

[]

{ /* Code for hit with action a */
_p4v_zombie.hit_t = 1;
_pAv__a t X = <73
_p4v_zombie.action_t ;= 1;
m.g:=_p4v__a t x|}

Us 11,720,373 B2

9

Here, the <?> expression denotes an arbitrary “havoc™
value, reflecting the fact that the action data supplied by the
control plane 1s unknown. In some embodiments, assump-
tions are generated as part of the translation/instrumentation
(at 2200). For example, the translation may include gener-
ating an assertion annotating each field read and field write,
asserting that the field belongs to a header instance that 1s
valid at the point of access. For example, the following
annotation for a validate_mpls_packet table 1n a switch
program (e.g. switch.p4) states that one of the actions should
only be taken when the mpls[0] instance 1s valid:

assume
action(validate_mpls_packet) == set_valid_mpls_labell
implies
reads(validate_mpls_packet, mpls[0]) == 1

Although P4 parsers may contain loops, some embodi-
ments follow the P4 reference implementation and unroll
loops and use a simple analysis to detect unproductive
cycles that do not extract any bits from the packet. Because
table rules are populated by the control plane, 1n some
embodiments each table application 1s translated nto a
non-deterministic choice between the actions declared for
the table and a special “no-op” to handle the case where the
packet misses in the table (unless the table declares a default
action, 1n which case it never misses). For example, the

statement “apply(decap)” from the example code depicted 1n
FIG. 3 1s translated 1nto the following code: assume (true),
decap_nop () decap_remove_single_tag () decap_remove_
double_tag (). The statement “assume true” encodes the

“no-op” operation for the case where the table misses.
Finally, some embodiments use Hindley-Milner type infer-
ence to assign types to each expression, mserting casts to
convert between Boolean values and bit values and adjust
widths and signs as appropnate. Similarly, the translation of
the ACL table 1n the firewall program discussed above 1s the
following GCL code: assume (true), allow(), deny().
Translating (at 220) the program in some embodiments
includes 1nlining (at 220¢) to eliminate procedure calls and
generate a single piece of GCL code that fully captures the
semantics of the original P4 source program. The primary
reason for inlining 1s to enable other optimizations and
simplity verification condition generation. However, inlin-
ing naively can lead to dramatic size increases, since it
replaces each procedure call with the entire body of that
procedure. Fortunately, by taking advantage of the domain-
specific structure of P4 programs, we can avoid this blowup

in some 1important cases. For example, consider a parser that
handles Fthernet, IPv4, and TCP:

parser start {
extract(ethemet);
return select(ethernet.etherType) {
0 x 800 : parse_ipv4;
default: ingress;

h
h

parser parse_ipv4 {
extract(ipv4);
return select(ipv4.protocol) {
0 x 6 : parse_tcp;
default: ingress;

h
h

parser parse_tcp {
extract(tcp) ;
refurn Imgress;

h

10

15

20

25

30

35

40

45

50

55

60

65

10

a naive mlining of the calls to ingress, will end up with three
identical copies of the code for the rest of the program.
However, because the last statement 1n every parser 1s a
transition to another state (or an error handler), a single copy
of the code for ingress 1s placed at the end of the start state,
in some embodiments, and other paths through the parser
simply “fall through” to that code. In practice, this optimi-
zation of the mlining significantly improves performance,
especially for programs that parse complex packet formats.

In some embodiments, inlimng (at 220¢) includes weav-
ing the control-plane assumptions 1nto the rest of the pro-
gram. 1o overcome the mismatch between the control-
plane’s global perspective, and data-plane’s local
perspective 1 p4v (e.g., control-plane assumptions that span
multiple tables) control-plane assumptions, 1n some embodi-
ments, are woven into every assertion 1n the program. For
example, if A 1s the control-plane assumption, then the
translation maps ever occurrence of an assertion assert(P) to
assert(A=>P). The eflect of this translation 1s to treat control-
plane assumptions as being in force at every program
location. In embodiments weaving control-plane assumption
into every assertion, istead of writing assumptions that are
only valid at particular locations, assumptions that are
locally valid should be predicated on reaching the location.
For example, using the existing annotation language and
ghost state, a local assumption that action(t)==a 1s predi-
cated on the assumption reach(t).

In some embodiments, inlining (at 220¢) includes memo-
rization, Memorization 1s used in some embodiments 1n
verilying loop-iree programs to reduce the blowup produced
by naive ilining 1n which all procedure calls are replaced by
the code for that procedure. In some embodiments, memo-
rization exploits the fact that certaimn procedures are per-
formed 1n particular orders (e.g., a P4 program for a switch
executes a parser, followed by an ingress pipeline, followed
by an egress pipeline) and verifies the later stages first and
memorizes the earlier verification results to avoid redundant
verification of the later stages along every branch of an
carlier stage (e.g., avoiding evaluating the ingress pipeline
for each of a number of different types of headers that can
be parsed for which a parser calls the ingress pipeline).

FIG. 8 provides a graphic depiction of a multiplicity of
procedure calls 801-811 for an exemplary P4 switch pro-
gram that all end up calling a single ingress pipeline. FIG.
8 1llustrates a series of procedures that may be traversed
between an 1nitiation (_pv4_init 801) and the beginning of
an 1gress pipeline 812. Certain procedures have names to
indicate a function (801 to 807 and 812) while others have
been left blank (808A-C to 811A-C) and are shown to
highlight the point that there are many paths between 801
and 812. Each arrow represents a procedure call that may be
made as part of the procedure from which the arrow origi-
nates. For example, “ parse_ethernet” 803 may call either
“ parse_mpls” 804 or the ingress pipeline 812. Procedure
“ parse_mpls” 804 may 1n turn call any of procedures 805,
807, or 812. The permutations of different procedure calls
cach need to be verified to ensure that the program functions
properly. If, for example, the program was to be verified
without memorization of the ingress pipeline, the verifica-
tion of each different path would require verniying the
ingress pipeline as part of that path. Memorization allows
the 1ngress pipeline to be verified once and the verification
results can be used 1n verilying each path.

To avoid exponential growth of verification conditions,
translating (at 220) the program further includes passiviza-
tion (at 220d). Exponential blowup, 1n some embodiments,
results from the cases for assignment, which substitutes an

Us 11,720,373 B2

11

expression for each copy of a vanable in the predicate, and
tor choice, which contains two copies of the postcondition.
Passivation converts programs into “passive form” (which 1s
similar to single-static assignment) where every assignment
1s replaced with an assumption about the state of the
program at that point. Such passivation, 1n some embodi-
ments, results in predicates that only grow quadratically
with the size of the program.

Translating (at 220) the program includes, 1n some
embodiments, an optimization (at 220e¢). In some embodi-
ments, constant folding, constant propagation, and dead
code elimination are used to streamline the translated code.
Additionally, some embodiments remove translated code
relating to the zombie state for programs that do not require
control-plane assumptions.

After translating the program into the second language,
the process computes (at 230) a precondition (e.g., a set of
verification conditions, or a predicate) that captures con-
straints on the 1nitial state to ensure that no assertion waill
fall. Computing the precondition, in some embodiments,
includes producing a single logical formula that can be
handed ofl to a satisfiability modulo theory (SMT) solver. In
some embodiments, the predicate 1s the predicate that places
the weakest constraints on the initial state to ensure that no
assertion will fail (e.g., a weakest liberal precondition). A
precondition 1n some embodiments expresses the conditions
that must hold betfore a program 1s run 1n order to satisty the
final conditions (e.g., that that no assertion will fail). Once
a precondition (e.g., the weakest constraint predicate) is
computed, 1t can be checked using an SMT solver.

FIG. 9 gives the formal definition of the predicate trans-
former semantics for GCL, which 1s also sometimes called
weakest preconditions. Most cases are intuitive—e.g.,
sequential composition threads the postcondition Q through
¢l and ¢2 while non-deterministic choice requires the con-
junction of the preconditions for ¢l and c2. The weakest
precondition for a P4 program i1s given by wlp(c, true),
where ¢ 1s the translation of the original program.

Once a suitable precondition or logical formula 1s com-
puted or produced, the process verifies (at 240) the satisfi-
ability of the precondition or formula. In some embodi-
ments, veritying (at 240) the satisfiability of the program (or
precondition) imncludes simulating (at 240a) a program func-
tion (e.g., assuming some precondition 1s true and running
through the program logic to determine 1f any logical
statements (1.e., translations of the original program includ-
ing assertions and assumptions) evaluate to false.

If the process determines (at 2405) that a logical assump-
tion 1s false, the SMT solver traces (at 240c¢) the program
tailure to determine the 1imitial condition (e.g., an assertion or
assumption) that causes the failure and then traces the mitial
condition forward to determine the path (e.g. function calls,
table reads, actions, etc.) that caused the assumption to fail.
In some embodiments, the trace 1s based on the annotations
(e.g., zombie state, assumptions, and assertions) included 1n
the program to be verified by the translation (at 220). The
process then outputs (at 240d) the trace of the failed assump-
tion on a user interface for a user to i1dentily and correct
problematic aspects of the original program.

In some embodiments, the process verifies (at 240)
whether the negation of the formula i1s satisfiable. If the
negation of the formula 1s not satisfiable, then the program
1s guaranteed to be correct, because the weakest precondi-
tions are valid. On the other hand, 1f the negation of the
formula 1s satisfiable, then the SMT solver (e.g., Z3) can
compute a model that provides a counter-example to the
property being checked.

10

15

20

25

30

35

40

45

50

55

60

65

12

In the case where the negation 1s satisfiable, the verifica-
tion (at 240) converts the model produced by the SMT solver

(e.g. Z3) back into a human-readable trace. Some embodi-
ments use a depth-first search on the program to find some
assertion whose formula evaluates to false in the model, and
then traces steps backwards to populate the rest of the trace.
In some embodiments, the SMT solver reports the itial
value of the packet headers, and the sequences parser states
and match-action tables executed to reach the failed asser-
tion. An example of a trace constructed using p4v, 1n some

embodiments, looks like:
[Result] Failed

[Counterexample] sk
[Parser]| start s
[Parser| _parse_ethernet

[Packet] ethernet.dstAddr=0x000000000000
[Packet] ethernet.src Addr=0x000000000000

[Packet] ethernet.etherType=0x{71f

[Assert] (not (=1pv4.valid 1w0))

In addition to using the method to verily single programs,
some embodiments provide a method to test the equivalence
of two programs. In some embodiments, computed precon-
ditions for the two programs are compared to evaluate
whether the programs are equivalent. In some embodiments,
programs are evaluated for equivalence based on precondi-
tions computed for constituent parts of the programs. In
some embodiments, procedures at certain levels of the
program (e.g., only a top level and a first nested level of
procedures) are compared 1 some embodiments. In some
embodiments, the compared preconditions are a set of
weakest liberal preconditions.

FIG. 10 illustrates a vernfied program 1005 (e.g., a for-
warding-element program that specifies desired behaviors of
a forwarding element for forwarding a data message that has
been verified by process 200) that, 1n some embodiments, 1s
provided to compiler 1010 that compiles the program and
sends the compiled program 10135 to control plane circuit
1020. Control plane circuit 1020 converts the compiled
program 1015 mto configuration data 1025 that 1s used to
configure the data plane circuit 1030 to execute the program.
In some embodiments, the configuration data 1s a set of
instructions that configures the data plane circuit 1030 to
implement the forwarding behaviors specified by verified
program 1005. In some embodiments, the compiler 1s
executed by the forwarding element (e.g., forwarding ele-
ment 100) that includes control plane circuit 1020 and data
plane circuit 1030. In other embodiments, the compiler
executes on a separate device and the compiled program 1s
provided to the forwarding element.

A further example of the use of the P4 verification 1s to
verily whether tables depend on each other (e.g., modily a
same field) and must be placed 1n different pipeline stages.
In some programmable forwarding elements (e.g., switches,
routers, bridges, etc.) such as a Tofino programmable Eth-
ernet switch built using a protocol independent switch
architecture (PISA), there are a limited number of stages
across which tables are implemented. Thus, for a PISA
architecture, efliciently assigning logical P4 tables to a
limited number of physical stages 1s a critical job of P4
compilers. Table assignment needs to maximize pipeline
concurrency, which allows multiple tables to be placed in the
same pipeline stage, while also respecting control and data
dependencies between tables.

A data dependency exists between two tables if one
matches a field that the other writes, and both are on the
same control flow path. Two tables can be placed on the

iSEP!

Us 11,720,373 B2

13

same pipeline stage if and only i1t they do not have a
dependency relationship. An example of tables that appear
to have a dependency are the “mirror” table for handling
packet copies cloned by mirroring engine and a “nd” table
tor handling packet replicas generated by a multicast engine.
They both have an action that modifies a user-defined
metadata field carrying layer-2 bridge domain (“egress_
metadata_bd”) as shown in the following code:

action set_mirror_bd(bd) {

modify_field(egress_metadata.bd, bd);
h

table mirror {
reads { i2e_metadata.mirror session_id : exact; }
actions {
nop;
set_mi rror_nhop;
set_mi rror_bd ;
h

h

action outer replica_from_rid (bd, .. .) {

modify_field(egress_metadata.bd, bd); . . .
h

action inner_replica_from_rid (bd, . ..) {

modify_field(egress_metadata.bd, bd); . . .

h
table rid {

reads { intrinsic_metadata.egress_rid: exact; }
actions {
nop;
outer_replica_from_rid;
inner_replica_from_rid;

h
h

A common field cannot be modified concurrently by mul-
tiple tables 1 one stage. In some embodiments, a table
definition 1n p4 enumerates all possible match fields and
actions that a control plane may use to form match-action
entries in runtime. At the time of program compilation, the
compiler does not know how control plane will actually
form the match-action entries. Thus, it analyzes table depen-
dencies 1n a conservative manner by assuming each table
will exercise all possible actions. Hence an action depen-
dency (two contlicting actions on the same field) 1s deemed
between the mirror and rid tables and they are allocated in
two diflerent stages.

However, using the P4 verification allows a compiler
confirm that the tables do not contlict and can be placed 1n
a same stage. For example, consider how the two tables
(mirror and rid) are used by mirroring and multicast, mirror
handles packet copies cloned by mirroring engine; it
matches on mirror session ID and sets either next hop (in
case of L3 traflic) or bridge domain (1n case of L2 traflic),
rid handles packet replicas generated by multicast engine; it
matches on egress.rid (replication ID) and sets bridge
domain and other tunnel information accordingly. Certain
PISA architectures allow a data packet to be mirrored and
replicated at the same time; such mirrored and replicated
copies can hit both mirror and rnid tables. Assuming the
network operator intends to apply the mirror and multicast
combo only to L3 traflic, the mirror table should not take
set_mirror_bd action for such L3 packets. If the mirror table
does not take a set_mirror_bd action, then the two tables do
not take conflicting actions anymore and can be placed
concurrently in the same stage.

A set of ghost variables 1s defined, 1n some embodiments,
to keep track of the value of egress_rid (‘R’) and mirror_
session_1id (*M”) and can be used to express the assumptions
about the control plane as 1n the following code added before
applying the tables:

10

15

20

25

30

35

40

45

50

55

60

65

((@pragma assume
intrinsic_metadata.egress_rid == R and \
12e_metadata.mirror_session_id == M

The previous lines of code indicate that egress rid and
mirror_session_id are given (by a multicast engine or when
a packet 1s cloned) prior to the application of the tables. After
applying the tables, the following code 1s introduced to
implement the control-plane assumptions:

(@pragma assume
(R !=0 and
reads(mirror , 12e_metadata.mirror.session_id) == M) implies
Y not(action(mirror) == set.mirror.bd)
(@pragma assert \
not({ action(rid) == inner_replica_from.rid or
action(rid) == outer_replica_from.rid) and
action{mirror) == set.mirror.bd)

The first condition “R!=0" checks 1f the packet 1s repli-
cated since replicated packets have non-zero egress.rid in
this case. The next condition, “reads(mirror, 12e_metadata.
mirror_session_1d)==M" checks 11 mirror table hits an entry
that matches mirror_session_id M for the current packet.
Under the two conditions, the packet 1s mirrored as well as
replicated, hence 1t must be a L3 packet, and the action taken
by mirror table cannot be set_mirror_bd. Finally, the assert
statement ensures that at most one of the two tables waill
exercise an action that modifies the common field. Note that
the use of ghost variables makes 1t easier to see that
conditions involving these values (vs. the metadata 1tsellf,
which might be modified 1n between where the program
reads its value and where the program make an assertion on
it) are what the control-plane enforces. The control-plane
can enforce these assumptions 1n various ways based on 1ts
implementation. For example, when the mirror table 1is
programmed for mirror session M, it can cross-check with
mirror configuration database to see 1f multicast 1s applied to
the mirror session, 1f so, 1t can prohibit the mirror_set_bd
action 1n the entry matching on session M.

FIG. 11 conceptually illustrates an electronic system 1100
with which some embodiments of the invention are imple-
mented. The electronic system 1100 may be a computer
(e.g., a desktop computer, personal computer, tablet com-
puter, server computer, mainframe, a blade computer etc.),
or any other sort of electronic device. The electronic system
1100 can also implement the control plane modules of some
embodiments. As shown, the electronic system includes
various types of computer readable media and interfaces for
various other types of computer readable media. Specifi-
cally, the electronic system 1100 includes a bus 1105,
processing unit(s) 1110, a system memory 1125, a read-only
memory 1130, a permanent storage device 1135, input
devices 1140, and output devices 1145.

The bus 1105 collectively represents all system, periph-
eral, and chipset buses that communicatively connect the
numerous internal devices of the electronic system 1100. For
instance, the bus 1105 communicatively connects the pro-
cessing umt(s) 1110 with the read-only memory 1130, the
system memory 1125, and the permanent storage device
1135. From these various memory units, the processing
unmit(s) 1110 retrieve instructions to execute and data to
process 1n order to execute the processes of the invention.
The processing unit(s) may be a single processor or a
multi-core processor 1n different embodiments.

Us 11,720,373 B2

15

The read-only-memory (ROM) 1130 stores static data and
instructions that are needed by the processing unit(s) 1110
and other modules of the electronic system. The permanent
storage device 1135, on the other hand, 1s a read-and-write
memory device. This device 1s a non-volatile memory unit
that stores instructions and data even when the electronic

system 1100 15 ofl. Some embodiments of the invention use
a mass-storage device (such as a magnetic or optical disk

and 1ts corresponding disk drive) as the permanent storage
device 1135.

Other embodiments use a removable storage device (such
as a floppy disk, flash drive, etc.) as the permanent storage
device. Like the permanent storage device 1133, the system
memory 1125 1s a read-and-write memory device. However,
unlike storage device 1135, the system memory 1s a volatile
read-and-write memory, such a random access memory. The
system memory stores some of the instructions and data that
the processor needs at runtime. In some embodiments, the
invention’s processes are stored 1n the system memory 1125,
the permanent storage device 1135, and/or the read-only
memory 1130. From these various memory umnits, the pro-
cessing unit(s) 1110 retrieve 1mstructions to execute and data
to process 1n order to execute the processes of some embodi-
ments.

The bus 1105 also connects to the mput and output
devices 1140 and 1145. The mput devices enable the user to
communicate mnformation and select commands to the elec-
tronic system. The mput devices 1140 include alphanumeric
keyboards and pointing devices (also called “cursor control
devices”). The output devices 1145 display images gener-
ated by the electronic system. The output devices include
printers and display devices, such as cathode ray tubes
(CRT) or liquid crystal displays (LCD). Some embodiments
include devices such as a touchscreen that function as both
input and output devices.

Finally, as shown in FIG. 11, bus 11035 also couples
clectronic system 1100 to a network 1163 through a network
adapter (not shown). In this manner, the computer can be a
part of a network of computers (such as a local area network
(“LAN), a wide area network (“WAN”), or an Intranet, or
a network of networks, such as the Internet. Any or all
components of electronic system 1100 may be used 1n
conjunction with the invention.

Some embodiments 1include electronic components, such
as microprocessors, storage and memory that store computer
program instructions in a machine-readable or computer-
readable medium (alternatively referred to as computer-
readable storage media, machine-readable media, or
machine-readable storage media). Some examples of such
computer-readable media include RAM, ROM, read-only
compact discs (CD-ROM), recordable compact discs (CD-
R), rewritable compact discs (CD-RW), read-only digital
versatile discs (e.g., DVD-ROM, dual-layer DVD-ROM), a
variety of recordable/rewritable DVDs (e.g., DVD-RAM,
DVD-RW, DVD+RW, etc.), flash memory (e.g., SD cards,
mim-SD cards, micro-SD cards, etc.), magnetic and/or solid
state hard drives, read-only and recordable Blu-Ray® discs,
ultra density optical discs, any other optical or magnetic
media, and floppy disks. The computer-readable media may
store a computer program that 1s executable by at least one
processing unit and includes sets of instructions for per-
forming various operations. Examples of computer pro-
grams or computer code include machine code, such as is
produced by a compiler, and files including higher-level
code that are executed by a computer, an electronic com-
ponent, or a mICroprocessor using an interpreter.

10

15

20

25

30

35

40

45

50

55

60

65

16

While the above discussion primarily refers to micropro-
cessor or multi-core processors that execute software, some
embodiments are performed by one or more integrated
circuits, such as application specific integrated circuits
(ASICs) or field programmable gate arrays (FPGAs). In
some embodiments, such integrated circuits execute instruc-
tions that are stored on the circuit itself.

As used in this specification, the terms “computer”,
“server”, “processor’, and “memory’” all refer to electronic
or other technological devices. These terms exclude people
or groups of people. For the purposes of the specification,
the terms display or displaying means displaying on an
clectronic device. As used 1n this specification, the terms
“computer readable medium,” “computer readable media,”
and “machine readable medium™ are entirely restricted to
tangible, physical objects that store information 1n a form
that 1s readable by a computer. These terms exclude any
wireless signals, wired download signals, and any other
ephemeral or transitory signals.

While the invention has been described with reference to
numerous specific details, one of ordinary skill 1n the art wall
recognize that the invention can be embodied in other
specific forms without departing from the spirit of the
invention. For instance, FIG. 2 conceptually illustrate a
process. The specific operations of this process may not be
performed 1n the exact order shown and described. The
specific operations may not be performed 1n one continuous
series of operations, and diflerent specific operations may be
performed 1n different embodiments. Furthermore, the pro-
cess could be implemented using several sub-processes, or
as part of a larger macro process.

Also, 1n the embodiments described above, the data plane
operators collect and report both path and hop latency values
to the control plane processes. In other embodiments, these
data plane operators only collect path data or hop latency
values, and report one such set of values to the control plane
processes. In still other embodiments, these data plane
operators collect other tracking data for each forwarding
clement along the path. One example of such other data 1s
queue depth at each forwarding element along the path.
Therefore, one of ordinary skill 1in the art would understand
that the 1nvention 1s not to be limited by the foregoing
illustrative details, but rather 1s to be defined by the

appended claims.

What 1s claimed 1s:
1. A non-transitory machine-readable medium storing a
verification program for execution by a set of processing
units, the verification program for verilying the correctness
of a forwarding-clement program to be executed by a
control-plane circuit to configure a data-plane circuit of a
forwarding element to forward data messages, the forward-
ing-clement program speciiying at least one element that 1s
populated during execution by a control plane circuit, the
verification program comprising a set of instructions that
when executed by the set of processing units results in
performance of operations comprising:
recerving the forwarding-element program;
annotating the forwarding-element program to reflect
assumptions regarding control-plane behavior;

translating the forwarding-element program and annota-
tions 1nto a different programming language that incor-
porates non-deterministic choice based on the assump-
tions regarding control plane behavior; and

using the translated program to verity the correctness of

the forwarding-element program and assumptions
regarding the control plane behavior;

Us 11,720,373 B2

17

wherein:
the data-plane circuit comprises a plurality of program-
mable packet processing stages that comprise match-
action tables that are to be configured by the control-
plane circuit for use 1n forwarding the data messages;
and
the using the translated program to verify the correct-
ness of the forwarding-element program and the
assumptions regarding the control-plane behavior
comprises verilying whether entries 1n the match-
action tables depend on each other.
2. The non-transitory machine readable medium of claim
1, wherein the forwarding-element program specifies a set of
tables to be executed by the data plane circuit, wherein the
set of tables 1s populated by the control plane.
3. The non-transitory machine readable medium of claim
2, wherein for each table 1n the set of tables, a set of actions
1s specified i the forwarding-element program based on
whether a match 1s found 1n the table.
4. The non-transitory machine readable medium of claim
3, wherein particular assumptions regarding control-plane
behavior are assumptions regarding whether a match 1s
found 1n a particular control-plane-populated table, wherein
the set of non-determimistic choices reflect the different
actions 1n the set of actions for the particular table.
5. The non-transitory machine readable medium of claim
2, wherein the translation and verification are performed
before the tables are populated by the control plane.
6. The non-transitory machine readable medium of claim
5, wherein the correctness of the received forwarding-
clement program depends on the values used to populate, by
the control plane, the tables specified in the forwarding-
clement program.
7. The non-transitory machine readable medium of claim
1, wherein the different programming language 1s guarded
command language (GCL).
8. The non-transitory machine readable medium of claim
7, wherein the data-plane program 1s programmed 1n the P4
language.
9. The non-transitory machine readable medium of claim
1, wherein translating the recerved forwarding-element pro-
gram COMmprises:
parsing the recerved forwarding-element program to 1den-
tify a set of variables in the forwarding-element pro-
gram; and
identifying, for the different programming language, the
corresponding type of each variable in the set of
variables to apply 1in translating the forwarding-element
program.

10

15

20

25

30

35

40

45

18

10. The non-transitory machine readable medium of claim
1, wherein translating the received forwarding-element pro-
gram comprises translating assumptions included in the
received forwarding-element program into a set of assump-
tions 1n the different programming language.

11. The non-transitory machine readable medium of claim
1, wherein translating the recerved data-plane program fur-
ther comprises adding variables in the translated program
that track the execution of tables and actions to be used n
verilying the correctness of the forwarding-element pro-
gram.

12. The non-transitory machine readable medium of claim
11, wherein added variables that track the execution of a
table record at least one of (1) whether the table was reached,
(11) which values were read by the table, (111) whether the
packet hit or missed, (1v) which action was executed, and (v)
which action data was supplied to the action.

13. The non-transitory machine readable medium of claim
12, wherein the added wvariables are used to trace the
operations of the received forwarding-element program.

14. The non-transitory machine readable medium of claim
12, wherein the verification program further comprises a set
ol instructions for:

displaying, when a forwarding-element program fails

verification, a trace of the operations that caused the
failure, the trace of operations based on the added
variables.

15. The non-transitory machine readable medium of claim
1, wherein translating the received forwarding-element pro-
gram comprises inlining the received forwarding-element
program to eliminate at least a set of procedure calls and
generate a single piece of translated code that tully captures
the semantics of the recerved forwarding-element program.

16. The non-transitory machine readable medium of claim
1, wherein using the translated program to verily the cor-
rectness of the forwarding-element program comprises gen-
erating a set of conditions corresponding to both the
received forwarding-clement program and the translated
program, the set of conditions being evaluated to verity the
correctness of the received data-plane program.

17. The non-transitory machine readable medium of claim
16, wherein the set of conditions 1s a weakest set of
conditions that are suflicient to insure that no assertions
included 1n the translated program fail.

18. The non-transitory machine readable medium of claim
17, wherein the correctness of the data-plane program 1s
verified using a satisfactory modulo theory (SMT) solver.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

