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Abstract

Referential integrity, which guarantees that named resources can be accessed when referenced, is an important
property for reliability and security. In distributed systems, however, the attempt to provide referential integrity
can itself lead to security vulnerabilities that are not currently well understood. This paper identifies three kinds of
referential security vulnerabilities related to the referential integrity of distributed, persistent information. Security
conditions corresponding to the absence of these vulnerabilities are formalized. A language model is used to capture
the key aspects of programming distributed systems with named, persistent resources in the presence of an adversary.
The referential security of distributed systems is proved to be enforced by a new type system.

1 Introduction
To make programming manageable, distributed systems are increasingly being implemented using high-level lan-
guages and libraries that present distributed resources as language-level objects. This approach goes back to research
platforms such as Argus [15], Emerald [4], and Network Objects [3], but is now applied widely in commercial pro-
gramming using middleware platforms such as CORBA [19], in more recent object-relational mapping (ORM) systems
such as Hibernate [11] and other Java Persistence API (JPA) [6] implementations, and in modern JavaScript ORM li-
braries [5].

Distributed systems naturally cross trust domains; it is often why they are distributed in the first place. Running a
program on a federated platform composed of differently trusted distributed nodes creates security vulnerabilities that
are not immediately apparent at the high level of abstraction at which the programmer is operating. Some of these
vulnerabilities have been addressed by prior work; for example, the Fabric system [16] provides a high-level, Java-
like abstraction for distributed programming, while using information-flow control to enforce both confidentiality and
integrity properties.

In this paper, we identify three new security goals relating to the security of references that cross trust domains.
Cross-domain references are a common feature not only of high-level distributed programming models, but of dis-
tributed systems in general. For example, web pages hyperlink to other pages, and relational-database tuples can
contain foreign keys referring to other tuples. Regardless of the kind of system, security and reliability vulnerabilities
are created when references cross trust boundaries, because they introduce dependencies between different parts of
the system. This paper identifies some of these referential vulnerabilities, formally characterizes them, and explores a
language-based approach to modeling, analyzing, and preventing them.

The first goal is referential integrity. A system has referential integrity if a reference can be relied upon to continue
pointing to the same object. Referential integrity fails when that object is deleted while the reference still exists,
resulting in a dangling reference, or when the reference points to a different object altogether.

Referential integrity appears in many guises. We use the term in a more general sense than in the database literature,
where referential integrity is an important aspect of the relational model [7]. For example, the web lacks referential
integrity: the referent of a hyperlink can be deleted, leading to the familiar “404” error. Referential integrity is also an
important property for programming-language design; in programming languages that lack referential integrity, such
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Figure 1: Directory example

as C, dangling pointers are a serious problem. Today, many languages have automatic garbage collection, allowing the
automatic reclamation of memory while preserving referential integrity.

While absolute referential integrity is desirable, it cannot be achieved in a federated system: referential integrity
is necessarily limited by the trustworthiness of the node (or nodes) storing the referent object. Therefore, this paper
generalizes referential integrity to systems where nodes are partially trusted.

Our second goal is intentional persistence. With referential integrity, a reference to an object is a promise to the
referrer that the object will not move or disappear: it must be persistent. Therefore, reachability implies persistence, as
in various object-oriented databases (e.g., [1, 17]) and in marshaling mechanisms such as Java serialization. However,
if all reachable objects are persistent, objects can become accidentally persistent because they are unexpectedly reach-
able. Accidental persistence can inflate resource consumption, leading to poor performance and system failure. This
problem is familiar to those who have used Java serialization. Intentional persistence entails the absence of accidental
persistence.

The third goal of this paper is immunity against storage attacks. Referential integrity prevents discarding reachable
objects. But this gives an adversary a means to mount a denial-of-service attack. The adversary creates references to
objects intended to be discarded, preventing reclamation and perhaps exhausting available storage space.

This paper formalizes these three goals as referential security properties, corresponding to the absence of refer-
ential vulnerabilities. This is done in the context of a simple programming language that captures the key elements
of distributed programming in a federated system with persistent information and pointers. A novel type system is
defined and is proved to enforce these security properties.

The rest of this paper is structured as follows. Section 2 describes the language model. Section 3 presents se-
curity policies for reasoning about the three vulnerabilities. Section 4 introduces the programming language λpersist,
which abstractly describes distributed programming with persistence and distrust. The language is defined formally
in Sections 5 and 6. Section 7 defines the adversary model. Section 8 formalizes the desired security conditions, and
proves that the type system of λpersist soundly enforces them. Related work is discussed in Section 9, and Section 10
concludes.

2 Language model

2.1 Modeling distributed computing as a language
We model distributed computing using a core programming language that we call λpersist. In λpersist, persistence, dis-
tribution, and communication are implicit but are constrained by policy annotations. Programs in λpersist are assumed
to be mapped onto distributed host nodes in some way that agrees with these annotations. This mapping could be done
manually by the programmer, or automatically by a compiler, à la Jif/split [23].

This implicit translation to a distributed implementation means that some apparently ordinary source-level oper-
ations may be implemented using distributed communication and computation. For example, function application
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may be implemented as a remote procedure call. Similarly, following references at the language level may involve
communication between nodes to fetch referenced objects.

Although the concrete mapping from source-level constructs onto host nodes is left implicit, we can nevertheless
faithfully evaluate the security of source-level computations. The key is to ensure that the system is secure under
any possible concrete mapping that is consistent with the policy annotations in the source program. That is, any given
computation or information might be located on any host that satisfies the source-level security constraints. A technical
contribution of this paper is to develop an effective system of such source-level constraints, expressed as a type system.

Although we refer to λpersist as a source language, little attempt is made to make it congenial to actual programming.
In particular, the type annotations introduced would be onerous in practice. They could be inferred automatically using
standard constraint-solving techniques for inequations over L, but we leave this to future work. One can view the type
system as describing a program (or system) analysis, and the formal results of this paper as a demonstration that this
analysis achieves its security goals.

2.2 Objects and references
Persistent objects are modeled in λpersist as records with mutable fields. The fields of an object can point to other
objects through references. References contain the names of these mutable objects. References are not assignable as
in ML [18]; imperative updates are achieved by assigning to mutable fields.

The language has two types of references: hard and soft. A hard reference is one with referential integrity: a
promise that the referenced object will not be destroyed if its host is trustworthy. Because of this promise, hard
references can only be created by trusted code. A soft reference does not create an obligation to maintain the referenced
object. The language models a garbage collector that may destroy objects reachable only via soft references. When
following a soft reference or an untrusted hard reference, a program must be prepared to handle a failure in case the
referenced object no longer exists. Hard links in Unix and references in Java are examples of hard references. URLs,
Unix symbolic links, and Java SoftReference objects are examples of soft references.

This simple data model can represent many different kinds of systems, such as distributed objects, databases, and
the web. The shared directory structure shown in Figure 1 serves as a running example. Alice and Bob are traveling
together and are using the system to share photos and itineraries. The root directory is kept on a host R. Alice and
Bob keep their directory objects on their own hosts, A and B, respectively. To share sightseeing ideas, they use a
common scratchpad stored on host U. Solid arrows in the figure represent hard references, and dashed arrows are soft
references. The a and p annotations are policies, which we now explain.

3 Policies for persistent programming

3.1 Persistence policies
Referential integrity ensures that a pointer can be followed to its referent—that there are no dangling pointers. In a fed-
erated system, referential integrity cannot be absolute, because the referenced object may be located on an untrusted,
perhaps maliciously controlled, host machine. Therefore, referential integrity must be constrained by the degree of
trust in the referenced host. This constraint is expressed by assigning each object a persistence policy describing how
much it can be trusted to remain in existence.

The precise form of the persistence policy is left abstract in this paper. Persistence policies p are assumed to be
drawn from a bounded lattice (L,≼,�,⊺) of policy levels. If p1 ≼ p2 for two persistence policies p1 and p2, then p2
describes objects that are at least as persistent as those described by p1.

Persistence policies have a simple, concrete interpretation. Absent replication, objects are located only on host
nodes that are trusted to enforce their persistence policies, so a persistence policy p corresponds to a set of sufficiently
trusted host nodes Hp. Therefore, if p1 ≼ p2, then p2 must be enforceable by a smaller set of hosts: Hp1 ⊇Hp2 . In fact,
it is reasonable to think of a policy p as simply a set of hosts.

In Figure 1, the root directory has persistence policy ⊺, which only host R is trusted to enforce. Alice has a user
directory and a persistence policy alice. While R is trusted to enforce this policy, she has chosen to use her own host A.
Similarly, Bob’s directory is on host B. The shared scratchpad is kept on an untrusted host U, which can only enforce
the persistence policy �.

Persistence policies are integrated into the type system of λpersist. The type of an object reference includes a lower
bound on the persistence policy of its referent; the type system ensures that the persistence of an object is always
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at least as high as that of any reference pointing to it. Programs can therefore use the persistence of a reference to
determine whether the reference can be trusted to be intact. This rule enables sound reasoning about persistence and
referential integrity as the graph of objects is traversed.

For example, in Figure 1, while Alice and Bob both have a hard reference to the scratchpad, they must be prepared
for a persistence failure when using the references. The type system of λpersist will ensure their code handles such a
failure. Any reference to the scratchpad must have a type with � persistence, because it can be no higher than the �
persistence of the scratchpad itself.

Whether a hard reference can be trusted to be intact depends on context. In Figure 1, Alice and Bob both have a
hard reference to the itinerary. Because Alice trusts her own persistence level, if either reference is typed with alice
persistence, then she can use it without worrying about a persistence failure. However, unless Bob trusts Alice, he
would need to be prepared for such a failure when using the references.

Soft references also have types with persistence levels, and hence might be trusted. Trusted soft references can be
promoted to trusted hard references. Therefore, soft references are distinct from untrusted hard references.

In λpersist, persistence is defined not by reachability, but by policy. This resolves by fiat one of the three problems
identified earlier: accidental persistence. Accidents are avoided by allowing programmers to express their intention
explicitly. An object that is not intended to be persistent is prevented from being treated as a persistent object.

3.2 Characterizing the adversary
Security involves an adversary, and is always predicated on assumptions about the power of the adversary. In the kind
of decentralized, federated system under consideration, the adversary is assumed to control some of the nodes in the
system.

Different participants in a distributed system may have their own viewpoints about who the adversary is, yet all
participants need security assurance. Therefore, a given adversary is modeled as a point α in the lattice of persistence
policy levels. In the host-set interpretation of persistence policies, α defines the set of trusted hosts that the adversary
does not control. The adversary is assumed to have the power to delete (i.e., violate the persistence of) an object if its
persistence is not α or higher (i.e., α /≼ p), because the object might be stored at a host node controlled by the adversary.
Other actions by the adversary are modeled by special evaluation rules (see Section 7).

The formal results for the security properties enforced by λpersist treat the adversary as an arbitrary parameter.
Therefore, these properties hold for any adversary.

3.3 Storage attacks and authority policies
We introduce the idea of storage attacks, in which a malicious adversary tries to prevent reclamation of object storage
by exploiting the enforcement of referential integrity. For example, in Figure 1, Bob has shared with Alice an album
containing the photos he has so far taken during their trip. Bob does not consider the album to be private, so others
may create references to his album, as Alice has done. However, an adversary that creates a hard reference to this
album can prevent Bob from reclaiming its storage.

To prevent such storage attacks, we ensure that hard references can be created only in sufficiently trusted code. We
introduce creation authority to abstractly define this power to create new references. This is the only action requiring
some form of authority in this paper, so for brevity, we refer to creation authority simply as authority.

Like persistence policies, authority policies a are assumed to be drawn from a bounded lattice (L,≼) of policy
levels. Without loss of expressive power, they are assumed to be drawn from the same lattice as persistence policies.
Authority prevents storage attacks because hard references can only be created to objects whose authority policy a is
less than or equal to the authority ap of the process; that is, a ≼ ap.

A hard reference is a reference that should have referential integrity, so creating hard references requires authority.
The adversary is assumed to have some ability to create hard references, described by its authority level α. Soft
references do not keep an object alive, so no creation authority is required to create a soft reference.

In Figure 1, the root directory has the authority policy �, so anyone can create a hard reference to it. Bob’s philly
album is large, so he has given it the authority policy bob; only he can create hard references that prevent the album
from being deleted. Therefore, Alice’s reference to the album must be soft. Alice has drafted an itinerary, giving it the
authority policy {alice,bob} to indicate she will persist the document for as long as Bob requires. Bob’s reference to
the itinerary, therefore, can be hard.
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Integrity Authority Persistence Set of hosts

⊺

“High”

Trusted, Untainted: “superuser”: Persistent:
No host nodesNo one No one can make No one can

can affect data a hard reference delete object

�

“Low”

Untrusted, Tainted: “anyone”: Transient:
All host nodesAnyone Anyone can make Anyone can

can affect data a hard reference delete object

Figure 2: Interpretations of the extremal policy labels

It may sound odd to posit control over creation of references. But a reference with referential integrity is a contract
between the referrer and the referent. For example, the node containing the referent is obligated to notify the referrer
if the object moves. Entering into a contract requires agreement by both parties, so it is reasonable for the node
containing the referent to refuse the creation of a reference.

3.4 Integrity
Thus far, the powers of the adversary include creating references to low-authority objects and destroying objects with
low persistence. Because the adversary may control some nodes, the adversary can also change the state of objects
located at these nodes. This may in turn affect code running on nodes not controlled by the adversary, if the adversary
supplies inputs to that code, or if it affects the decision to run that code.

Integrity policies describe limitations on these effects of the adversary. Integrity policies w are drawn from a
bounded lattice (L,≼) of policy levels; without loss of expressive power, it is assumed to be the same lattice as for
persistence and authority policies. In fact, we can think of the persistence and authority levels of an object as the
integrity of other, implicit attributes of the object. For persistence, this implicit attribute is the existence of the object
itself. For authority, the attribute is the set of incoming references to the object. This unifying view of different policies
as different aspects of integrity explains why all three kinds of policies can come from the same lattice.

The ordering ≼ corresponds to increasing integrity. If w1 ≼ w2, an information flow from level w2 to w1 would be
secure: more-trusted information would be affecting less-trusted information.1 In λpersist, each variable and each field
of an object has an associated integrity level describing how trusted it is, and hence how powerful an adversary must
be to damage it. The integrity of a reference is the integrity of the field or variable it was read from.

Figure 2 summarizes the interpretation of the three kinds of policies.

3.5 Integrity of dereferences and interaction with garbage collection
An adversary can directly affect the result of a dereference in two ways. First, if the reference has low integrity, the
adversary can alter it to point to a different object. Second, if the referent has low persistence, the adversary can
delete it. Therefore, the integrity of any dereference can be no higher than the integrity and persistence annotations
on the reference. In Figure 1, if Alice follows the reference from her docs directory to the scratchpad, she obtains an
untrusted result; the untrusted host U influences the result by choosing whether to delete the scratchpad object.

More subtly, the adversary can manipulate hard references to influence the garbage collector, and thereby indirectly
affect the result of a dereference. For example, in Figure 3a, Alice is following her soft reference to Bob’s lyon album.
Bob has marked lyon as only requiring low authority, allowing the untrusted, adversarial host U to create a hard
reference, and thereby preventing lyon from being garbage-collected. Therefore, Alice’s dereference must succeed.

However, in Figure 3b, the adversary U has removed its reference. Subsequently, lyon has been garbage-collected,
and Alice’s dereference fails. The adversary has indirectly affected the outcome of the dereference. To account for
this, the integrity of Alice’s dereference must be no higher than the authority required by lyon.

1This ordering is the opposite of the “upside-down” ordering typically seen in work on information-flow security [2], and corresponds to the
trust ordering [16].
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(a) (b)

Figure 3: Authority affects integrity of dereferences. Alice is following her soft reference to the lyon album. An
adversary can affect the outcome of the dereference, because the album has low authority. (a) The untrusted host U has
a hard reference preventing lyon from being garbage collected; Alice’s dereference succeeds. (b) Host U has removed
its hard reference, allowing lyon to be garbage collected; Alice’s dereference fails.

Variables x,y ∈ Var Policy levels w,a, p,` ∈ L

Memory locations m ∈ Mem PC labels pc ∶∶= w
Labeled record types S ∶∶= {

ÐÐ⇀xi ∶ τi}s Storage labels s ∶∶= (a, p)
Labeled ref types R ∶∶= {

ÐÐ⇀xi ∶ τi}r Reference labels r ∶∶= (a+,a−, p)

Base types b ∶∶= bool ∣ τ1
pc
Ð→ τ2 ∣ R ∣ soft R Types τ ∶∶= bw ∣ 1

Values v,u ∶∶= x ∣ true ∣ false ∣ ∗ ∣ mS
∣ soft mS

∣ λ(x ∶ τ)[pc].e (∣ �p)

Terms e ∶∶= v ∣ v1 v2 ∣ if v1 then e2 else e3 ∣ {
ÐÐÐ⇀xi = vi}

S
∣ v.x

∣ v1.x ∶= v2 ∣ soft e ∣ e1∥e2 ∣ exists v as x ∶ e1 else e2 ∣ let x = e1 in e2

Figure 4: Syntax of λ
0
persist. Parenthesized productions only appear at run time.

4 Types for persistent programming
To formalize the ideas presented in the previous section, we introduce the λpersist language, an extension to the simply
typed lambda calculus. Figure 4 gives part of the formal syntax of λpersist. Its type system prevents referential vulner-
abilities by integrating policies for persistence, authority, and integrity into types. Accidental persistence is prevented
because persistence is determined by policies expressing the programmer’s intent, rather than by reachability. Refer-
ential integrity is maintained by a λpersist program with respect to a particular adversary if following hard references
whose persistence and integrity are above the level of the adversary never leads to an object that has been destroyed
by the adversary or garbage-collected. Storage attacks are prevented if the adversary is unable to change the set of
high-authority objects that are reachable through hard references.

4.1 Labels
We assume a bounded lattice (L,≼,�,⊺) of policy levels, from which integrity (w), authority (a), and persistence
policies (p) are drawn.

Objects and reference values are annotated with storage labels consisting of a creation authority policy and a
persistence policy. All non-unit types τ consist of a base type b along with an integrity policy annotation w; fields
and variables thereby acquire integrity policies, because they are part of their types. Objects do not have their own
integrity labels because all of their state is in their fields, which do have labels.

The program-counter label pc [9] is an integrity level indicating the degree to which the program’s control flow
has been tainted by untrusted data. This label restricts the side effects of code.

4.2 Example
Suppose we want to create a hierarchical, distributed directory structure, such as in Figure 1. Each directory maps
names to either strings, representing ordinary files, or to other directories, and contains a reference to its parent
directory (elided in the figure). To faithfully model ordinary filesystems, directories higher in the hierarchy should be
more persistent: if they are destroyed, so is everything below.
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A fully general directory structure would require augmenting λpersist with recursive and dependent types; for
simplicity, these features have been omitted from λpersist because they do not appear to add interesting issues. However,
we can capture the security of a general directory structure by using λpersist records to build a fixed-depth directory
structure with a fixed set of entry names for each directory.

4.3 Modeling objects and references
The security policies of λpersist are about objects and references to them. Therefore, λpersist extends the lambda calculus
with records that represent the content of objects. The record {ÐÐÐ⇀xi = vi} comprises a set of fieldsÐ⇀xi with corresponding
valuesÐ⇀vi . Records are not values in the language; instead, they are accessed via references mS, where m is the identity
of the object and S = {ÐÐ⇀xi ∶ τi}s gives its base record type. The storage label s is a pair (a, p). The authority label a is
an upper bound on the authority required to create a new reference to the referent object.

References to objects have labeled reference types {ÐÐ⇀xi ∶ τi}r. A reference label r is a triple (a+,a−, p) that gives
upper and lower bounds on the authority required by the referent, and a lower bound on the persistence of the referent.
The upper authority label a+ restricts reference copying to prevent storage attacks. The lower authority label a−

prevents the adversary from exploiting garbage collection to damage integrity (Section 3.5), by tainting the integrity
of dereferencing soft references.

4.4 Modeling distributed systems
The goal of the λpersist language is to model a distributed system in which code is running at different host nodes. A
single program written in λpersist is intended to represent such a system. The key to modeling distributed, federated
computation faithfully is that different parts of the program can be annotated with different integrity labels, represent-
ing the trust that has been placed in that part of the code. To model a set of computations (subprograms Ð⇀ei ) executing
at different nodes, the individual computations are composed in parallel (e1∥⋯∥en) into a single λpersist program.

From the viewpoint of a given principal in the system, code with a low integrity label, relative to that principal, can
be replaced by any code at all. For the purposes of evaluating the security of the system, this code is in effect erased
and replaced by the adversary. Therefore the single-program representation faithfully models a distributed system
containing an adversary.

5 Accidental persistence and storage attacks
We present λpersist in two phases. In this section, we present λ

0
persist, a simplified subset of λpersist that prevents

accidental persistence and storage attacks.

5.1 Syntax of λ0
persist

Figure 4 gives the syntax of λ
0
persist. The names x and y range over variable names Var; m ranges over a space of

memory addresses Mem; w, a, p, and ` range over the lattice L of policy levels; and s and r range over the space of
storage labels L2 and reference labels L3, respectively.

Types in λ
0
persist consist of base types with an integrity label (bw), and the unit type 1, which needs no integrity

label. Base types include booleans, functions, and two kinds of references to mutable records: hard (R) and soft
(soft R). The metavariable R denotes a labeled reference type.

The type τ1
pcÐ→ τ2 is a function type with a pc annotation that is a lower bound on the pc label of the caller. It gives

an upper bound on the integrity of data the function affects, on the authority level of references the function creates,
and on the authority level of references in the function body and in the closure environment.

Values include variables x, booleans true and false, the unit value ∗, record-typed memory locations (references)
mS, soft references soft mS, and functions λ(x ∶τ)[pc].e. A function λ(x ∶τ)[pc].e has one argument x with type τ. The
pc component has the same meaning as that in function types. At run time, p-persistence failures �p can also appear
as values.

Terms include values v and u, applications v1 v2, if expressions if v1 then e2 else e3, record constructors {ÐÐÐ⇀xi = vi}S,
field selections v.x, field assignments v1.x ∶= v2, soft references soft e, parallel composition e1∥e2, soft-reference tests
exists v as x ∶ e1 else e2, and let expressions let x = e1 in e2.
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[APPLY] ⟨(λ(x ∶τ)[pc].e) v,M⟩ eÐ→ ⟨e{v/x},M⟩

[LET]
∀p. v ≠ �p

⟨let x = v in e,M⟩ eÐ→ ⟨e{v/x},M⟩
[IF-TRUE] ⟨if true then e1 else e2,M⟩ eÐ→ ⟨e1,M⟩

[IF-FALSE] ⟨if false then e1 else e2,M⟩ eÐ→ ⟨e2,M⟩

[CREATE]
m = newloc(M)

⟨{ÐÐÐ⇀xi = vi}S,M⟩ eÐ→ ⟨mS,M[mS ↦{ÐÐÐ⇀xi = vi}]⟩

[PARALLEL-
RESULT

] ⟨v1∥v2,M⟩ eÐ→ ⟨∗,M⟩ [SELECT]
M(mS) = {ÐÐÐ⇀xi = vi}

⟨mS.xc,M⟩ eÐ→ ⟨vc,M⟩

[ASSIGN]
M(mS) ≠ � ∀p. v ≠ �p

⟨mS.xc ∶= v,M⟩ eÐ→ ⟨∗,M[mS.xc ↦ v]⟩

[DANGLE-
SELECT

]
M(mS) = � p = persist(mS)

⟨mS.xc,M⟩ eÐ→ ⟨�p,M⟩
[DANGLE-

ASSIGN
]

M(mS) = � p = persist(mS)
⟨mS.xc ∶= v,M⟩ eÐ→ ⟨�p,M⟩

[EXISTS-
TRUE

]
M(mS) ≠ �

⟨exists soft mS as x ∶ e1 else e2,M⟩ eÐ→ ⟨e1{mS/x},M⟩

[EXISTS-
FALSE

]
M(mS) = �

⟨exists soft mS as x ∶ e1 else e2,M⟩ eÐ→ ⟨e2,M⟩

[ EVAL-
CONTEXT

]
⟨e,M⟩ eÐ→ ⟨e′,M′⟩

⟨E[e],M⟩ eÐ→ ⟨E[e′],M′⟩
[FAIL-

PROP
] ⟨F [�p] ,M⟩ eÐ→ ⟨�p,M⟩

E ∶∶= soft [ ⋅] ∣ let x = [⋅] in e ∣ [ ⋅ ]∥e ∣ e∥[⋅] F ∶∶= soft [ ⋅] ∣ let x = [⋅] in e

[PROG-STEP]
⟨e,M⟩ eÐ→ ⟨e′,M′⟩
⟨e,M⟩ → ⟨e′,M′⟩

[GC]
gc(G,⟨e,M⟩)

⟨e,M⟩ → ⟨e,M[G↦�]⟩

Figure 5: Small-step operational semantics for nonadversarial execution of λ
0
persist.

5.2 Example
Returning to the directory example in Figure 1, Bob can add to the itinerary with the code below. It starts at the root
of the directory structure, traverses down to the itinerary, and invokes an add method to add a museum.

let home = root.bob

in exists home as bob:

let docs = bob.docs

in docs.itinerary.add "Rodin Museum"

else: ...

The garbage collector may have snapped the soft reference home to Bob’s home directory, so exists is used to
determine whether the reference is still valid. If so, the body of the exists is evaluated with bob bound to a hard
reference to the home directory.2 (This reference can be created because the pc label at this point has sufficient
creation authority.) The second select expression, bob.docs, dereferences the hard reference.

5.3 Operational semantics of λ0
persist

Figure 5 gives the small-step operational semantics of λ
0
persist. The notation e{v/x} denotes capture-avoiding substitu-

tion of value v for variable x in expression e. A failed or garbage-collected memory location contains value �. Most
of the operational semantics rules are straightforward, but a few deserve more explanation.

2To avoid a race with the garbage collector, an implementation of exists should first optimistically create the hard reference, then check its
validity before exposing it to the program.
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Let M represent a memory: a finite partial map from typed memory locations mS to closed record values. Let
⟨e,M⟩ be a system configuration. A small evaluation step is a transition from ⟨e,M⟩ to another configuration ⟨e′,M′⟩,
written ⟨e,M⟩ → ⟨e′,M′⟩.

To avoid using undefined memory locations, we restrict the form of ⟨e,M⟩. Let locs(e) represent the set of locations
appearing explicitly in e. A memory M is well-formed only if every address m appears at most once in dom(M), and for
any location mS in dom(M), locs(M(mS)) ⊆ dom(M). A configuration ⟨e,M⟩ is well-formed only if M is well-formed,
locs(e) ⊆ dom(M), and e has no free variables. Evaluation preserves well-formed configurations (see Lemma 10 in
Section 8.3).

Though the operational semantics refer to complete record types, only their persistence labels are needed at run
time. These labels are only used to determine the level of persistence failure that occurs when dereferencing a dangling
reference (rules DANGLE-SELECT and DANGLE-ASSIGN), so run-time overhead should be small.

The record constructor {ÐÐÐ⇀xi = vi}S (rule CREATE) creates a new memory location mS to hold the record. The
component S specifies the base type and storage label of the record. The storage label governs at what nodes the object
can be created. The function newloc(M) deterministically generates a fresh memory location. If address-space(M)
represents the set of location names in M (i.e., {m ∶ ∃S.mS ∈ dom(M)}), then newloc(M) /∈ address-space(M) and
newloc(M′) = newloc(M) if address-space(M′) = address-space(M).

Parallel-composition expressions e1∥e2 evaluate to the unit value (rule PARALLEL-RESULT).
The field-selection expression v.x (rules SELECT and DANGLE-SELECT) evaluates v to a memory location mS. If

the location has not failed, the result of the selection is the value of the field x of the record at that location. Otherwise,
a p-persistence failure occurs, where p is the persistence level of mS, written p = persist(mS).

The field-assignment expression v1.x ∶= v2 evaluates v1 to a memory location mS (rules ASSIGN and DANGLE-
ASSIGN) If the location has not failed, v2 is assigned into the field x of the record at that location; otherwise, a
p-persistence failure occurs (where p = persist(mS)). The notation M[mS.xc ↦ v] denotes the memory resulting from
updating with value v the field xc of the record at location mS.

Persistence failures propagate outward dynamically (FAIL-PROP) until the whole program fails. The full λpersist
language, defined in Section 6, can handle these failures.

In rule EVAL-CONTEXT, E represents an ordinary evaluation context, whereas in rule FAIL-PROP, F gives the
contexts from which persistence failures propagate. Contexts are given as a term with a single hole (denoted by [ ⋅])
in redex position. The syntax of E specifies the evaluation order.

The soft-reference expression soft e evaluates e to a hard reference and turns it into a soft reference. The soft-
reference test (exists v as x ∶ e1 else e2) promotes the soft reference v (if valid) to a hard reference bound to x and
evaluates e1. If the reference is invalid, e2 is evaluated instead.

In rule GC, the notation gc(G,⟨e,M⟩) means that G is a set of locations that is collectible. G is considered
collectible if it has no GC roots (i.e., hard references in e), and no location outside G has a hard reference into G. This
is defined formally as follows.

Definition 1 (GC roots). A location mS is a GC root in an expression e, written root(mS,e), if it is a hard reference in
e. This is formally defined by the following inference rules:

[R1]
root(mS,mS

)
[R2]

root(mS,e) ∀mS0
0 . e ≠ mS0

0

root(mS,soft e)
[R3]

∃i. root(mS,vi)

root(mS,{ÐÐÐ⇀xi = vi}
S′
)

[R4]
root(mS,v)

root(mS,v.x)
[R5]

∃i. root(mS,vi)

root(mS,v1.x ∶= v2)
[R6]

root(mS,e)

root(mS,λ(x ∶τ)[pc].e)

[R7]
∃i. root(mS,vi)

root(mS,v1 v2)
[R8]

∃i. root(mS,ei)

root(mS, let x = e1 in e2)
[R9]

∃i. root(mS,ei)

root(mS,e1∥e2)

[R10]
∃i. root(mS,ei)

root(mS, if e1 then e2 else e3)
[R11]

∃i. root(mS,ei)

root(mS,exists e1 as x ∶ e2 else e3)

λpersist, defined in Section 6, adds R12; and [λpersist], defined in Section 7, adds R13:

[R12]
∃i. root(mS,ei)

root(mS,try e1 catch p∶ e2)
[R13]

root(mS,e)

root(mS,[e])

9



[S1]
n > m

⊢ {x1 ∶τ1, . . . ,xn ∶τn}r ≤ {x1 ∶τ1, . . . ,xm ∶τm}r
[S2]

⊢ R1 ≤ R2

⊢ soft R1 ≤ soft R2

[S3]
⊢ b1 ≤ b2 ⊢ w2 ≼ w1

⊢ (b1)w1 ≤ (b2)w2

[S4]
⊢ τ2 ≤ τ1 ⊢ τ

′
1 ≤ τ

′
2 ⊢ pc1 ≼ pc2

⊢ τ1
pc1
ÐÐ→ τ

′
1 ≤ τ2

pc2
ÐÐ→ τ

′
2

[S5]
⊢ a+1 ≼ a+2 ⊢ a−2 ≼ a−1 ⊢ p2 ≼ p1

⊢ {
ÐÐ⇀xi ∶ τi}(a+1 ,a

−
1 ,p1)

≤ {
ÐÐ⇀xi ∶ τi}(a+2 ,a

−
2 ,p2)

Figure 6: Subtyping rules for λ
0
persist

Definition 2 (Collectible groups). A set of locations G is a collectible group in a configuration ⟨e,M⟩, written
gc(G,⟨e,M⟩), if it does not contain any roots of e, and no location outside G has a hard reference into G.

gc(G,⟨e,M⟩)
def.
⇐⇒

G ⊆ dom(M)
∧(∄mS ∈G. root(mS,e))
∧∀mS0

0 ∈ dom(M). (M(mS0
0 ) ≠ �∧∃mS ∈G. root(mS,M(mS0

0 )))⇒mS0
0 ∈G

5.4 Subtyping in λ0
persist

The subtyping judgment ⊢ τ1 ≤ τ2 states that any value of type τ1 can be treated as a value of type τ2. Subtyping in
λ

0
persist is the least reflexive and transitive relation consistent with the rules given in Figure 6. Rule S1 gives standard

width subtyping on records. Because records are mutable, there is no depth subtyping.
Subtyping on soft references is covariant (rule S2). While hard references may be soundly used as soft references,

this is omitted for simplicity. Rule S3 gives contravariant subtyping on integrity labels. Rule S4 gives standard
subtyping on functions; the additional pc component is covariant. These are the opposite of the rules typically seen in
work on information-flow security, accounting for our use of the trust ordering.

Rule S5 gives subtyping for labeled reference types. Subtyping is covariant on the a+ component of the reference
label and contravariant on the other two components. This ensures the bounds specified by the reference label of the
subtype are at least as precise as those of the supertype.

5.5 Static semantics of λ0
persist

Typing rules for λ
0
persist are given in Figure 7. The notation auth+(r), auth−(r), and persist(r) give the upper authority

(a+), lower authority (a−), and persistence (p) component of a reference label r, respectively. The notation auth+(s)
and persist(s) give the authority and persistence component of a storage label, respectively. The notation auth+(τ),
defined below, gives the authority level needed to create a hard reference to a value of type τ. The integrity of τ is
written integ(τ), and τ⊓` denotes the type obtained by tainting (meeting) the integrity of τ with `:

auth+(bool) = auth+(1) = auth+(soft R) = �
integ(bw) = w (bw)⊓` = bw⊓` auth+(τ1

pcÐ→ τ2) = pc
integ(1) = ⊺ 1⊓` = 1 auth+({ÐÐ⇀xi ∶ τi}s) = auth+(s)

The typing context includes a type assignment Γ and the program-counter label pc. Γ is a finite partial map from
variables x to types τ, expressed as a finite list of x ∶τ entries. We write x ∶τ ∈ Γ and Γ(x) = τ interchangeably. For an
expression e that is well-typed in a context Γ;pc, the type checker produces a type τ. The typing assertion Γ;pc ⊢ e ∶ τ,
therefore, means that the expression e has type τ under type assignment Γ with program-counter label pc.

Most of the typing rules are standard rules, extended to ensure that the pc is sufficiently high to obtain any hard
references that may result from evaluating subexpressions (e.g., premise ⊢ auth+(τ) ≼ pc in Rule T-IF), and that the
pc is suitably tainted.
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[T-BOOL]
b ∈ {true, false}
Γ;pc ⊢ b ∶ bool⊺

[T-UNIT] Γ;pc ⊢ ∗ ∶ 1

[T-VAR]
Γ(x) = τ

Γ;pc ⊢ x ∶ τ
[T-BOT]

p ≠ ⊺
Γ;pc ⊢ �p ∶ τ

[T-LOC]
⊢wf S ∶ rectype S = {ÐÐ⇀xi ∶ τi}(a,p)

Γ;pc ⊢mS ∶ ({ÐÐ⇀xi ∶ τi}(a,a,p))⊺
[T-SOFT]

Γ;pc ⊢ e ∶ Rw

Γ;pc ⊢ soft e ∶ (soft R)w

[T-IF]

Γ;pc ⊢ v ∶ boolw
Γ;pc⊓w ⊢ ei ∶ τ (∀i)

⊢ auth+(τ) ≼ pc⊓w

Γ;pc ⊢ if v then e1 else e2 ∶ τ⊓w
[T-PLL]

Γ;pc ⊢ ei ∶ τi
(∀i)

⊢ auth+(τi) ≼ pc (∀i)

Γ;pc ⊢ e1∥e2 ∶ 1

[T-ABS]

Γ,x ∶τ′;pc′ ⊢ e ∶ τ
⊢wf (τ

′ pc′Ð→ τ)⊺ ∶ type ⊢ pc′ ≼ pc

Γ;pc ⊢ λ(x ∶τ′)[pc′].e ∶ (τ
′ pc′Ð→ τ)⊺

[T-APP]

Γ;pc ⊢ v1 ∶ (τ
′ pc′Ð→ τ)w

Γ;pc ⊢ v2 ∶ τ′
⊢ pc′ ≼ pc⊓w

Γ;pc ⊢ v1 v2 ∶ τ⊓w

[T-REC]

⊢wf S ∶ rectype S = {ÐÐ⇀xi ∶ τi}(a,p) Γ;pc ⊢ vi ∶ τ′i (∀i)

⊢ τ
′
i ≤ τi

(∀i) ⊢ auth+(τ
′
i) ≼ pc (∀i) ⊢ integ(τi) ≼ pc (∀i) ⊢ p ≼ pc

Γ;pc ⊢ {ÐÐÐ⇀xi = vi}S ∶ ({ÐÐ⇀xi ∶ τi}(a,a,p))⊺

[T-SEL]

Γ;pc ⊢ v ∶ ({ÐÐ⇀xi ∶ τi}r)w
⊢ auth+(r) ≼ pc

w′ =w⊓persist(r)
Γ;pc ⊢ v.xc ∶ τc⊓w′

[T-ASGN]

Γ;pc ⊢ v1 ∶ ({ÐÐ⇀xi ∶ τi}r)w
⊢ auth+(r) ≼ pc

Γ;pc ⊢ v2 ∶ τ
⊢ τ⊓pc⊓w ≤ τc
⊢ auth+(τ) ≼ pc⊓w

Γ;pc ⊢ v1.xc ∶= v2 ∶ 1

[T-EXISTS]

Γ;pc ⊢ v ∶ (soft {ÐÐ⇀xi ∶ τi}r)w ⊢ auth+(r) ≼ pc⊓w
w′ = auth−(r)⊓persist(r)⊓w Γ,x ∶({ÐÐ⇀xi ∶ τi}r)w;pc⊓w′ ⊢ e1 ∶ τ

Γ;pc⊓w′ ⊢ e2 ∶ τ ⊢ auth+(τ) ≼ pc⊓w′

Γ;pc ⊢ exists v as x ∶ e1 else e2 ∶ τ⊓w′

[T-LET]

Γ;pc ⊢ e1 ∶ τ′ ⊢ auth+(τ
′) ≼ pc

w = integ(τ
′) pc′ = pc⊓w

Γ,x ∶τ′;pc′ ⊢ e2 ∶ τ ⊢ auth+(τ) ≼ pc′

Γ;pc ⊢ let x = e1 in e2 ∶ τ⊓w
[T-SUB]

Γ;pc ⊢ e ∶ τ′ ⊢ τ
′ ≤ τ

Γ;pc ⊢ e ∶ τ

Figure 7: Typing rules for λ
0
persist

Rule T-BOT says persistence failures can have any well-formed type.
Rule T-ABS checks function values. It ensures that the function’s program-counter label pc′ accurately summarizes

the authority levels of the references contained in the closure, and that the pc is high enough to create this closure.
The body is checked with program-counter label pc′, so in rule T-APP, the function can only be used by code with
sufficient integrity.

Rule T-REC checks the creation of records. It requires that the annotation S be well-formed. Also, the pc must be
high enough to create any hard references that appear in the fields, and to write to the fields themselves.

When using a hard reference v1, the pc must have sufficient authority to possess v1 (premise ⊢ auth+(r) ≼ pc in
rules T-SEL and T-ASGN). When assigning through v1, hard references contained in the assigned value v2 also require
authority. Since the integrity and persistence of v1 can affect whether the assignment succeeds, we taint the pc with
these labels before comparing with the authority requirement of v2.

Rule T-EXISTS checks soft-reference validity tests. It ensures that the pc has the authority to promote the reference
from soft to hard (premise ⊢ auth+(r) ≼ pc).
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[WT1] ⊢wf boolw ∶ type [WT2]

⊢ pc ≼w ⊢wf τ1 ∶ type ⊢wf τ2 ∶ type
⊢ auth+(τ1)⊔auth+(τ2) ≼ pc

⊢wf (τ1
pcÐ→ τ2)w ∶ type

[WT3] ⊢wf 1 ∶ type [WT4]
⊢wf ({ÐÐ⇀xi ∶ τi}(a,a,p))⊺ ∶ type ⊢ integ(τi) ≼ p (∀i)

⊢wf {ÐÐ⇀xi ∶ τi}(a,p) ∶ rectype

[WT5]
⊢wf R⊺ ∶ type

⊢wf (soft R)w ∶ type
[WT6]

⊢wf τi ∶ type (∀i) ⊢ auth+(τi) ≼ a+ (∀i)

⊢ a+ ≼w⊓ p ⊢ a− ≼ a+

⊢wf ({ÐÐ⇀xi ∶ τi}(a+,a−,p))w ∶ type

Figure 8: Well-formedness of types

The rules for determining the well-formedness of types are given in Figure 8. In rule WT6, a reference type
({ÐÐ⇀xi ∶ τi}(a+,a−,p))w is well-formed only if the upper authority label a+ is an upper bound on the authority levels of
the field types τi. This ensures that the upper authority label is an accurate summary of the authority required by the
fields. We also require a+ be bounded from above by the integrity w of the reference, since low-integrity data should
not influence the creation of high-authority references. To ensure hosts are able to create hard references to the objects
they store, we also require auth+(r) to be bounded from above by the persistence level p of the record.

6 Ensuring referential integrity
In a distributed system, references can span trust domains, so to be secure and reliable, program code must in general
be ready to encounter a dangling reference, one perhaps created by the adversary. Therefore, we extend λ

0
persist with

persistence-failure handlers to obtain the full λpersist language (see Appendix A.1 for its full syntax). The type system
of λpersist forces the programmer to be aware of and to handle all potential failures.

One approach is to handle the failure immediately upon using a broken reference. However, because low-persistence
references may be used frequently, this would result in lots of duplicated failure-handling code.

Instead, λpersist factors out failure-handling code from ordinary code by treating failures as a kind of exception.
The value of (try e1 catch p∶ e2) is the value of evaluating e1. If a dangling reference at persistence level p or
higher is encountered, the failure handler e2 is evaluated instead. A try expression creates a context (e1) in which the
programmer can write simpler code under the assumption that certain persistence failures are impossible, yet without
sacrificing the property that all failures are handled.

6.1 Persistence handler levels
To track the failures that the current context can handle, a set of persistence levelsH is used.It provides lower bounds
on the persistence levels of hard references that may be directly dereferenced. Functions λ(x ∶τ)[pc;H].e and function

types τ1
pc,HÐÐ→ τ2 are extended with anH component, which is an upper bound on theH levels of the caller.

Formally, H is drawn from the bounded meet-semilattice given by the upper powerdomain [22] of persistence
levels. The elements of the powerdomain are the finitely generated subsets3 of L, modulo equivalence relation (1)
below. The ordering on these elements is given by (2). If we choose maximal sets to represent the equivalence classes,
then the meet operation is set union.

A ∼ B
def.
⇐⇒ ∀` ∈ L. ((∃a ∈ A. a ≼ `)⇔ (∃b ∈ B. b ≼ `)) (1)

A ≼℘ B
def.
⇐⇒ ∀b ∈ B. ∃a ∈ A. a ≼ b (2)

3Non-empty subsets that either are finite or contain �.
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[ SOFT-
SELECT

]
⟨mS.xc,M⟩ eÐ→ ⟨v,M⟩

⟨(soft mS).xc,M⟩ eÐ→ ⟨v,M⟩
[ SOFT-

ASSIGN
]

⟨mS.xc ∶= v,M⟩ eÐ→ ⟨v′,M′⟩
⟨(soft mS).xc ∶= v,M⟩ eÐ→ ⟨v′,M′⟩

[TRY-
VAL

]
∀p′. v ≠ �p′

⟨try v catch p∶ e,M⟩ eÐ→ ⟨v,M⟩
[ TRY-

CATCH
]

p ≼ p′

⟨try �p′ catch p∶ e,M⟩ eÐ→ ⟨e,M⟩

[TRY-
ESC

]
p /≼ p′

⟨try �p′ catch p∶ e,M⟩ eÐ→ ⟨�p′ ,M⟩
E ∶∶= . . . ∣ try [ ⋅] catch p∶ e

[T-SOFT-
SELECT

]

Γ;pc;H⊢ v ∶ (soft {ÐÐ⇀xi ∶ τi}r)w,⊺ ⊢ auth+(τc) ≼ pc
p = auth−(r)⊓persist(r)⊓w ⊢H ≼ p

Γ;pc;H⊢ v.xc ∶ τc ⊓ p, p

[T-SOFT-
ASSIGN

]

Γ;pc;H⊢ v1 ∶ (soft {ÐÐ⇀xi ∶ τi}r)w,⊺ p = auth−(r)⊓persist(r)⊓w
Γ;pc;H⊢ v2 ∶ τ,⊺ ⊢ τ⊓pc⊓ p ≤ τc ⊢ auth+(τ) ≼ pc⊓ p ⊢H ≼ p

Γ;pc;H⊢ v1.xc ∶= v2 ∶ 1, p

[T-TRY]

Γ;pc;H, p ⊢ e1 ∶ τ,X1 w = ⊓
p′∈X1

(p⊔ p′)

Γ;pc⊓w⊓ integ(τ);H⊢ e2 ∶ τ,X2 ⊢ auth+(τ) ≼ pc

Γ;pc;H⊢ try e1 catch p∶ e2 ∶ τ⊓w,(X1/p)⊓X2

Figure 9: Additional small-step evaluation and typing rules for λpersist

6.2 Example
Returning to the directory example in Figure 1, Alice can add a place to the list of sightseeing ideas with the code
below. This code starts at Alice’s docs directory, traverses the reference to the scratchpad, and invokes an add method
to add a museum.

let pad = docs.scratchpad

in try pad.add "Rodin Museum" catch �: ...

The expression pad.add follows a hard reference to the scratchpad. Despite the hard reference, a try is needed because
Alice does not trust host U to persist the scratchpad.

6.3 Static and dynamic semantics of λpersist

The small-step operational semantics of λpersist extends that of λ
0
persist with the rules in the top of Figure 9. Failures

propagate outward dynamically (TRY-ESC) until either they are handled by a failure handler (TRY-CATCH), or the
whole program fails. Appendix A.2 gives the full operational semantics for λpersist.

The subtyping rules are the same as for λ
0
persist, except that function subtyping is also contravariant on the H

component. Full subtyping rules are given in Appendix A.3.
The typing rules for λpersist extend those for λ

0
persist. They augment the typing context with a handler environment

H, indicating the set of persistence failures the evaluation context can handle. For an expression e that is well-typed in
a context Γ;pc;H, typing judgments additionally produce an effect X , which is a set indicating the persistence failures
that can occur during evaluation. The typing assertion Γ;pc;H ⊢ e ∶ τ,X , therefore, means that the expression e has
type τ and effect X under type assignment Γ, current program-counter label pc, and handler environmentH.

The typing rules for λ
0
persist are converted straightforwardly to thread H and X through typing judgments. Rules

T-SEL and T-ASGN gain premises to ensure the context has a suitable handler in case dereferences fail. Appendix A.4
gives the full set of converted rules.

The bottom of Figure 9 gives three new typing rules. T-SOFT-SELECT and T-SOFT-ASSIGN check direct uses
of soft references. They taint the integrity of the dereference with auth−(r) because the result of the dereference is
affected by those able to pin the referent in memory by creating a hard reference (Section 3.5). Rule T-TRY checks
try expressions. To reflect the installation of a p-persistence handler, p is added to the handler environment H when
checking e1. The value w in the typing rule is a conservative summary of the persistence errors that can occur while
evaluating e1 and are not handled by the p-persistence handler. Because evaluation of e2 depends on the result of e1,
the pc label for evaluating e2 is tainted by w. In this rule, the notation X/p denotes the subset of persistence errors X
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[CREATE]
m = newloc(M) S = {

ÐÐ⇀xi ∶ τi}s v′i = vi ▸α τi

⟨{
ÐÐ⇀xi = vi}

S
,M⟩

e
Ð→ ⟨mS

,M[mS
↦{
ÐÐÐ⇀
xi = v′i}]⟩

[SELECT]

M(mS
) = {

ÐÐ⇀xi = vi}

S = {
ÐÐ⇀xi ∶ τi}(a,p)

⟨mS
.xc,M⟩

e
Ð→ ⟨vc ▸α p,M⟩

[ASSIGN]

M(mS
) ≠ � ∀p′. v ≠ �p′
S = {

ÐÐ⇀xi ∶ τi}(a,p)
M′

= M[mS
.xc ↦ v▸α τc]

⟨mS
.xc ∶= v,M⟩

e
Ð→ ⟨∗▸α p,M′

⟩

[
DANGLE-
SELECT

]

M(mS
) = �

S = {
ÐÐ⇀xi ∶ τi}(a,p)

⟨mS
.xc,M⟩

e
Ð→ ⟨�p ▸α p,M⟩

[
DANGLE-
ASSIGN

]

M(mS
) = �

S = {
ÐÐ⇀xi ∶ τi}(a,p)

⟨mS
.xc ∶= v,M⟩

e
Ð→ ⟨�p ▸α p,M⟩

[
SOFT-

SELECT
]

⟨mS
.xc,M⟩

e
Ð→ ⟨v,M⟩ S = {

ÐÐ⇀xi ∶ τi}(a,p)

⟨(soft mS
).xc,M⟩

e
Ð→ ⟨v▸α (a⊓ p),M⟩

[
SOFT-

ASSIGN
]

⟨mS
.xc ∶= v,M⟩

e
Ð→ ⟨v′,M′

⟩ S = {
ÐÐ⇀xi ∶ τi}(a,p)

⟨(soft mS
).xc ∶= v,M⟩

e
Ð→ ⟨v′ ▸α (a⊓ p),M′

⟩

[
EXISTS-

TRUE
]

M(mS
) ≠ � S = {

ÐÐ⇀xi ∶ τi}(a,p)

⟨exists soft mS
as x ∶ e1 else e2,M⟩

e
Ð→ ⟨(e1{mS

/x})▸α (a⊓ p),M⟩

[
EXISTS-
FALSE

]
M(mS

) ≠ � S = {
ÐÐ⇀xi ∶ τi}(a,p)

⟨exists soft mS
as x ∶ e1 else e2,M⟩

e
Ð→ ⟨e2 ▸α (a⊓ p),M⟩

[
BRACKET-

SELECT
] ⟨[mS

].xc,M⟩
e
Ð→ ⟨[mS

.xc],M⟩ [
BRACKET-

ASSIGN
] ⟨[mS

].xc ∶= v,M⟩
e
Ð→ ⟨[mS

.xc ∶= v],M⟩

[
BRACKET-

SOFT-SELECT
]

⟨[soft mS
].xc,M⟩

e
Ð→ ⟨[(soft mS

).xc],M⟩
[

BRACKET-
SOFT-ASSIGN

]
⟨[soft mS

].xc ∶= v,M⟩
e
Ð→ ⟨[(soft mS

).xc ∶= v],M⟩

[
BRACKET-

SOFT
] ⟨soft [mS

],M⟩
e
Ð→ ⟨[soft mS

],M⟩ [
DOUBLE-
BRACKET

] ⟨[[v]],M⟩
e
Ð→ ⟨[v],M⟩

[
BRACKET-

EXISTS
]

⟨exists [v] as x ∶ e1 else e2,M⟩
e
Ð→ ⟨[exists v as x ∶ e1 else e2],M⟩

[
BRACKET-

APPLY
]

⟨[λ(x ∶τ)[pc;H].e] v,M⟩
e
Ð→ ⟨[(λ(x ∶τ)[pc;H].e) v],M⟩

[
BRACKET-

TRY
]

⟨try [v] catch p∶ e,M⟩
e
Ð→ ⟨[try v catch p∶ e],M⟩

[
BRACKET-

IF
]

⟨if [v] then e1 else e2,M⟩
e
Ð→ ⟨[if v then e1 else e2],M⟩

[
BRACKET-

LET
]

∀p. v ≠ �p

⟨let x = [v] in e,M⟩
e
Ð→ ⟨[e{[v]/x}],M⟩

[
BRACKET-
CONTEXT

]
⟨e,M⟩

e
Ð→ ⟨e′,M′

⟩

⟨[e],M⟩
e
Ð→ ⟨[e′],M′

⟩
[

BRACKET-
FAIL

] ⟨F[[�p]],M⟩
e
Ð→ ⟨[�p],M⟩

Figure 10: Small-step operational semantics extensions for ordinary execution of [λpersist]

not handled by p. Formally, this is defined as follows.

H/p ∆= {p′ ∈ H ∶ p /≼ p′}

7 The power of the adversary
Possible actions of the adversary are modeled by extending the operational semantics of Figure 5 with more transi-
tions. To support reasoning about what an adversary may have affected in a partially evaluated program, λpersist is also
augmented to include bracketed expressions, resulting in the language [λpersist]. The term [e] represents an expression
e that may have been influenced by the adversary, and [v] is an influenced value. The operational semantics is ex-
tended by adding rules that propagate these brackets in the obvious manner. (Doubly bracketed values are considered
expressions, not values.)

The extended syntax and the rule for typing bracketed terms appear below. Extensions for the operational semantics
appear in Figure 10.

Values v ∶∶= . . . ∣ [v]
Terms e ∶∶= . . . ∣ [e]

[T-BRACKET]
Γ;pc⊓ `;H⊢ e ∶ τ,X α /≼ ` ⊢ auth+(τ) ≼ pc⊓ `

Γ;pc;H⊢ [e] ∶ τ⊓ `,X

Rules CREATE, SELECT, DANGLE-SELECT, ASSIGN, DANGLE-ASSIGN, SOFT-SELECT, SOFT-ASSIGN, EXISTS-
TRUE, and EXISTS-FALSE are amended to ensure low-integrity expressions are bracketed. To do this, they use the
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[α-CREATE]

m = newloc(M) ∅;⊺;⊺ ⊢ {
ÐÐÐÐ⇀
xi = [vi]}

S
∶ R⊺,⊺

⊢
α

[wf] M[mS
↦{
ÐÐÐÐ⇀
xi = [vi]}] α /≼ persist(S)

⟨e,M⟩ ↝α ⟨e,M[mS
↦{
ÐÐÐÐ⇀
xi = [vi]}]⟩

[α-ASSIGN]

mS
∈ dom(M) M(mS

) ≠ �

S = {
ÐÐ⇀xi ∶ τi}s ∅;⊺;⊺ ⊢ [v] ∶ τc,⊺

⊢
α

[wf] M[mS.xc ↦ [v]]

⟨e,M⟩ ↝α ⟨e,M[mS.xc ↦ [v]]⟩
[α-FORGET]

mS
∈ dom(M)

α /≼ persist(S)

⟨e,M⟩ ↝α ⟨e,M[mS
↦�]⟩

Figure 11: Effects caused by the α-adversary

auto-bracketing function e▸α `, which is formally defined below. The notation e▸α τ is shorthand for e▸α integ(τ).

e▸α ` = { e, if ⊢ α ≼ ` or ∃e′. e = [e′];
[e] , otherwise.

Also, rules TRY-VAL and LET are amended to prevent a transition when v is bracketed, and rules that disallow
transitions on bottom values (�p) are amended to prevent transitions on bracketed bottom values.

The adversary is powerful, as shown by the transitions defined in Figure 11. Adversaries may create new records,
modify existing records, or remove records from memory altogether, but their ability is bounded by an integrity label
α ∈ L. Such an α-adversary has all creation authority except α and higher, can modify any record field except those
with α (or higher) integrity, and can delete any record except those with α (or higher) persistence. A small evaluation
step taken in the presence of an α-adversary is a transition from a machine configuration ⟨e,M⟩ to another configuration
⟨e′,M′⟩, written ⟨e,M⟩ →α ⟨e′,M′⟩.

It is important to know that any evaluation of a program in the original language can be simulated in the aug-
mented language, which amounts to showing that the rules cover all the ways that brackets can appear. This is proved
straightforwardly by induction on the evaluation rules (see Lemma 1 in Section 8).

The adversary’s transitions embody a simplifying assumption that the adversary can only create well-typed values.
While it is reasonable to allow the adversary to create ill-typed values, an implementation with run-time type checking
can catch ill-typed values when they cross between hosts and replace them with well-typed default values.

Rule α-CREATE lets the adversary create records at new memory locations. The premise ∅;⊺;⊺ ⊢ {
ÐÐÐÐ⇀
xi = [vi]}S ∶

R⊺,⊺ ensures that the records are well-typed values and that new hard references satisfy the restrictions on the adver-
sary. The premise ⊢α

[wf] M[mS ↦ {
ÐÐÐÐ⇀
xi = [vi]}] ensures that the resulting memory is well-formed (formally defined in

Section 8.1), so the adversary cannot create references to unknown memory locations.
Rule α-ASSIGN lets the adversary modify existing records. The premise M(mS) ≠ � ensures that the record being

modified still exists in memory. The premise ∅;⊺;⊺ ⊢ [v] ∶ τc,⊺ ensures that the assignment is well-typed and that new
hard references satisfy the restrictions on the adversary. The premise ⊢α

[wf] M[mS.xc ↦ [v]] ensures that the resulting
memory is well-formed, so the adversary cannot create references to unknown memory locations.

Rule α-FORGET lets the adversary drop records from memory. The premise α /≼ persist(S) restricts the persistence
level of dropped records.

8 Results
The goal of λpersist is to prevent accidental persistence and to ensure that the adversary cannot damage referential
integrity or cause storage attacks. Accidental persistence is prevented by the use of persistence policies. We now show
how to formalize the other security properties and prove that λpersist satisfies these properties.

8.1 Well-formedness
A well-formed λpersist memory M, written ⊢wf M, maps typed locations to record values with the same type. This is
defined formally as follows.
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Definition 3 (Well-formed λpersist memory). A λpersist memory M is well-formed, written ⊢wf M, if each record stored
in M satisfies two conditions: the record’s type corresponds to the type of the record’s location in M, and every location
mentioned in the record is valid in M.

More precisely, whenever M maps a reference mS to a record value {ÐÐÐ⇀xi = vi},

• S is well-formed,

• each vi has the appropriate type (as specified by S),

• the locations mentioned in the field values vi are in the domain of M:

⊢wf M
def.
⇐⇒(M(mS) = {ÐÐÐ⇀xi = vi}∧S = {ÐÐ⇀xi ∶ τi}(a,p)

⇒ ⊢wf S ∶ rectype
∧(∀i. ∅;⊺;⊺ ⊢ vi ∶ τi,⊺)
∧ locs({ÐÐÐ⇀xi = vi}) ⊆ dom(M))

Our notion of a well-formed configuration relies on knowing when a location is noncollectible (cannot be garbage
collected), which we now define.

Definition 4 (Noncollectible locations). A memory location mS is noncollectible in a configuration ⟨e,M⟩, written
nc(mS,⟨e,M⟩), if it is reachable from a GC root of e through a path of hard references.

This is defined formally by the following induction rules:

[NC1]
root(mS,e)

nc(mS,⟨e,M⟩)
[NC2]

root(mS1
1 ,e) M(mS1

1 ) = {
ÐÐÐ⇀xi = vi} ∃c. nc(mS,⟨vc,M⟩)

nc(mS,⟨e,M⟩)

Well-formedness of configurations, defined below, is parameterized on an adversary α.

Definition 5 (Well-formed λpersist configuration). A λpersist configuration ⟨e,M⟩ is well-formed, written ⊢α

wf ⟨e,M⟩, if
the following all hold:

• M is well-formed;

• the locations mentioned in e are valid in M;

• no noncollectible high-persistence location is deleted; and

• if G is a minimal collectible group in which a high-persistence location is deleted, then all locations in G are
also deleted.

Formally,

⊢α

wf ⟨e,M⟩
def.
⇐⇒⊢wf M∧ locs(e) ⊆ dom(M)

∧(∀mS.nc(mS,⟨e,M⟩)∧ ⊢ α ≼ persist(S)
⇒M(mS) ≠ �)

∧(∀G. gc(G,⟨e,M⟩)∧(∄G′ ⊆G. gc(G′,⟨e,M⟩))
∧(∃mS0

0 ∈G. ⊢ α ≼ persist(S0)∧M(mS0
0 ) = �)

⇒∀mS ∈G. M(mS) = �)

A λpersist configuration is well-formed in a nonadversarial setting, written ⊢wf ⟨e,M⟩, if it is well-formed with respect
to the � adversary.

Corresponding well-formedness conditions are defined similarly for [λpersist] memories (written ⊢α

[wf] M and ⊢
[wf]

M) and for [λpersist] configurations (written ⊢α

[wf] ⟨e,M⟩ and ⊢[wf] ⟨e,M⟩). Well-formedness of [λpersist] memories is
parameterized on an α-adversary, because values appearing in low-integrity record fields must be bracketed.
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Definition 6 (Well-formed [λpersist] memory). A [λpersist] memory M is well-formed with respect to an adversary α

(written ⊢α

[wf] M) if it is a well-formed λpersist memory and all low-integrity field values are bracketed:

⊢α

[wf] M
def.
⇐⇒ ⊢wf M∧(M(mS) = {ÐÐÐ⇀xi = vi}∧S = {ÐÐ⇀xi ∶ τi}s∧α /≼ integ(τi)

⇒ ∃v′. vi = [v′])

Definition 7 (Well-formed [λpersist] configuration). A [λpersist] configuration ⟨e,M⟩ is well-formed if it is a well-formed
λpersist configuration with a well-formed [λpersist] memory. A configuration is well-formed in a nonadversarial setting
if it is well-formed in the presence of a � adversary.

⊢
α

[wf] ⟨e,M⟩
def.
⇐⇒⊢

α

[wf] M∧ ⊢
α

wf ⟨e,M⟩

⊢[wf] ⟨e,M⟩
def.
⇐⇒⊢

�
[wf] ⟨e,M⟩

8.2 Completeness of [λpersist] evaluation
For [λpersist] to be adequate for reasoning about referential security properties of λpersist, we must be able to simulate
any λpersist execution in [λpersist]. This is a completeness property. To do this, we first need to define what it means for
a [λpersist] configuration to simulate a λpersist configuration. This involves defining a correspondence on expressions
and heaps between the two languages. We write e1 ≲ e2 to denote that the λpersist term e1 corresponds to the [λpersist]
term e2. The terms correspond if erasing brackets from e2 produces e1.

Definition 8 (Correspondence between [λpersist] and λpersist expressions). A [λpersist] expression e is related to a λpersist
expression e′, written ⊢ e ≲ e′, if the two are equal when brackets in e are removed. This is formally defined by the
following induction rules.

e = e

⊢ e ≲ e

⊢ e ≲ e′

⊢ [e] ≲ e′
⊢ e ≲ e′

⊢ λ(x ∶τ)[pc;H].e ≲ λ(x ∶τ)[pc;H].e′
⊢ vi ≲ ui

(∀i)

⊢ v1 v2 ≲ u1 u2

⊢ ei ≲ e′i
(∀i)

⊢ if e1 then e2 else e3 ≲ if e′1 then e′2 else e′3

⊢ vi ≲ ui
(∀i)

⊢ {
ÐÐÐ⇀xi = vi}

S
≲ {
ÐÐÐ⇀xi = ui}

S

⊢ v ≲ u

⊢ v.x ≲ u.x

⊢ vi ≲ ui
(∀i)

⊢ v1.x ∶= v2 ≲ u1.x ∶= u2

⊢ e ≲ e′

⊢ soft e ≲ soft e′
⊢ ei ≲ e′i

(∀i)

⊢ e1∥e2 ≲ e′1∥e′2

⊢ ei ≲ e′i
(∀i)

⊢ exists e1 as x ∶ e2 else e3 ≲ exists e′1 as x ∶ e′2 else e′3

⊢ ei ≲ e′i
(∀i)

⊢ try e1 catch p∶ e2 ≲ try e′1 catch p∶ e′2

⊢ ei ≲ e′i
(∀i)

⊢ let x = e1 in e2 ≲ let x = e′1 in e′2

This correspondence induces one on heaps. Together, the two give the correspondence on configurations.

Definition 9 (Correspondence between [λpersist] and λpersist memories). A [λpersist] memory M1 is related to a λpersist
memory M2, written ⊢M1 ≲M2, if they map the same set of locations, and the memories map each location to values
that are related.

⊢M1 ≲M2
def.
⇐⇒ dom(M1) = dom(M2)

∧∀mS ∈ dom(M1). M1(mS) =M2(mS) = �
∨ ⊢M1(mS) ≲M2(mS)

Definition 10 (Correspondence between [λpersist] and λpersist configurations). A [λpersist] configuration ⟨e1,M1⟩ is
related to a λpersist configuration ⟨e2,M2⟩, written ⊢ ⟨e1,M1⟩ ≲ ⟨e2,M2⟩, if both the expressions and the memories are
related:

⊢ ⟨e1,M1⟩ ≲ ⟨e2,M2⟩
def.
⇐⇒⊢ e1 ≲ e2∧ ⊢M1 ≲M2

We can now state and prove the completeness of [λpersist].
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Lemma 1 (Completeness of [λpersist] with respect to λpersist). Let ⟨e1,M1⟩ be a well-formed λpersist configuration with
e1 well-typed. Let ⟨e2,M2⟩ be a well-formed [λpersist] configuration corresponding to ⟨e1,M1⟩, with e2 well-typed. If
⟨e1,M1⟩ takes a→ transition to ⟨e′1,M′

1⟩, then there exists a configuration ⟨e′2,M′
2⟩ corresponding to ⟨e′1,M′

1⟩ such that
⟨e2,M2⟩ →∗

α ⟨e′2,M′
2⟩.

⊢α

wf ⟨e1,M1⟩∧∅;pc;H⊢ e1 ∶ τ,X
∧ ⊢α

[wf] ⟨e2,M2⟩∧∅;pc;H⊢ e2 ∶ τ,X
∧ ⊢ ⟨e1,M1⟩ ≲ ⟨e2,M2⟩∧⟨e1,M1⟩ → ⟨e′1,M′

1⟩
⇒ ∃e′2,M

′
2.⟨e2,M2⟩ →∗

α ⟨e′2,M′
2⟩∧⟨e′1,M′

1⟩ ≲ ⟨e′2,M′
2⟩

Proof. Induction on the derivation of ⟨e1,M1⟩ →α ⟨e′1,M′
1⟩.

8.3 Soundness of [λpersist] type system
We prove the type system sound with the usual method, via type preservation (Lemma 9) and progress (Lemma 13).
Because we are only concerned with well-formed configurations, it is important to know that they are preserved by
the operational semantics. This is captured by Lemma 10.

We first show some preliminary results for weakening the typing context.

Lemma 2 (Type-environment weakening). Extra type assumptions can be safely added to typing contexts: Γ;pc;H⊢
e ∶ τ,X ∧x /∈ FV(e)⇒ Γ,x ∶τ′;pc;H⊢ e ∶ τ,X .

Proof. By induction on the derivation of Γ;pc;H⊢ e ∶ τ,X .

Lemma 3 (pc weakening). The pc label in a typing context can be safely raised.

⊢ pc ≼ pc′∧Γ;pc;H⊢ e ∶ τ,X ⇒ Γ;pc′;H⊢ e ∶ τ,X

Proof. By induction on the derivation of Γ;pc;H⊢ e ∶ τ,X .
Rules T-BOOL, T-UNIT, T-LOC, T-BOTTOM, and T-VAR are trivial base cases. Rule T-ABS follows from the

transitivity of ≼. Rules T-SOFT, T-PARALLEL, and T-SUBSUME follow from the induction hypothesis.
Rules T-RECORD, T-SELECT, T-SOFT-SELECT, T-ASSIGN, T-SOFT-ASSIGN, T-EXISTS, T-APP, T-LET, T-

TRY, T-IF, and T-BRACKET follow from the induction hypothesis and the transitivity of ≼. In rules T-ASSIGN and
T-SOFT-ASSIGN, we need to show ⊢ τ⊓pc′⊓ p ≤ τc. By assumption, we have ⊢ τ⊓pc⊓ p ≤ τc. Let bw = τ. Then using
S3, we can show

⊢ b ≤ b ⊢w⊓pc⊓ p ≼w⊓pc′⊓ p

⊢ τ⊓pc′⊓ p ≤ τ⊓pc⊓ p ,

and the result follows from transitivity of subtyping.

Lemma 4 (Handler weakening). Extra handler assumptions can be safely added to the typing context.

⊢H′ ≼H∧Γ;pc;H⊢ e ∶ τ,X ⇒ Γ;pc;H′ ⊢ e ∶ τ,X

Proof. By induction on the derivation of Γ;pc;H⊢ e ∶ τ,X .
Rules T-BOOL, T-UNIT, T-LOC, T-BOTTOM, T-VAR, T-ABS, and T-PARALLEL are trivial base cases.
Rules T-SOFT, T-RECORD, T-SELECT, T-ASSIGN, T-SOFT-SELECT, T-SOFT-ASSIGN, T-EXISTS, T-APP, T-

LET, T-IF, T-SUBSUME, and T-BRACKET follow from the induction hypothesis.
Rule T-TRY follows from the induction hypothesis and the fact thatH′∪{p} ≼H∪{p}.

Corollary 5 summarizes these results.

Corollary 5 (Context weakening). Suppose Γ;pc;H⊢ e ∶ τ,X with x /∈ FV(e), pc ≼ pc′ andH′ ≼H. Then

Γ,x ∶τ′;pc′;H′ ⊢ e ∶ τ,X

We can now prove the substitution lemma.
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Lemma 6 (Substitution). Γ,x ∶τ′;pc;H⊢ e ∶ τ,X ∧∅;pc;H⊢ v ∶ τ′,⊺⇒ Γ;pc;H⊢ e{v/x} ∶ τ,X .

Proof. By induction on the derivation of Γ,x ∶ τ′;pc;H ⊢ e ∶ τ,X . Note that since v was typed in an empty type
assignment (Γ = ∅), we must have FV(v) = ∅.

Rules T-BOOL, T-UNIT, T-LOC, and T-BOTTOM are trivial base cases.
Rules T-SOFT, T-RECORD, T-SELECT, T-ASSIGN, T-SOFT-SELECT, T-SOFT-ASSIGN, T-APP, T-PARALLEL,

T-TRY, T-IF, T-SUBSUME, and T-BRACKET follow from the definition of substitution and the induction hypothesis.

Case T-VAR:

Suppose e = x. Then e{v/x} = v and τ
′ = τ and the result holds in this case via Corollary 5 and T-SUBSUME.

Alternatively, suppose e = y ≠ x. In this case, e{v/x} = e and the result holds trivially.

Case T-ABS (e = λ(y ∶τ1)[pc1;H1].e1):

If y = x, then e{v/x} = e and the result holds trivially. Alternatively, suppose y ≠ x. We have FV(v) = ∅, so
e{v/x} = λ(y ∶τ1)[pc1;H1].e1{v/x}. Let Γ

′ = Γ,x ∶τ′. From the typing of e, we have

Γ,x ∶τ′,y ∶τ1;pc1;H1 ⊢ e1 ∶ τ2,H1

⊢wf (τ1
pc1,H1ÐÐÐÐ→ τ2)⊺ ∶ type ⊢ pc1 ≼ pc

Γ,x ∶τ′;pc;H⊢ λ(y ∶τ1)[pc1;H1].e1 ∶ (τ1
pc1,H1ÐÐÐÐ→ τ2)⊺,⊺ ,

where τ = (τ1
pc1,H1ÐÐÐÐ→ τ2)⊺ andX =⊺. So, we know Γ,x ∶τ′,y∶τ1;pc1;H1 ⊢ e1 ∶ τ2,H1. Therefore, by the induction

hypothesis, we have Γ,y ∶τ1;pc1;H1 ⊢ e1{v/x} ∶ τ2,H1. So the result holds in this case via an application of T-
ABS:

Γ,y ∶τ1;pc1;H1 ⊢ e1{v/x} ∶ τ2,H1

⊢wf (τ1
pc1,H1ÐÐÐÐ→ τ2)⊺ ∶ type ⊢ pc1 ≼ pc

Γ;pc;H⊢ λ(y ∶τ1)[pc1;H1].e1{v/x} ∶ (τ1
pc1,H1ÐÐÐÐ→ τ2)⊺,⊺ .

Case T-EXISTS (exists u as y ∶ e1 else e2):

From the typing of e, we have

Γ,x ∶τ′;pc;H⊢ u ∶ (soft {ÐÐ⇀xi ∶ τi}r)w,⊺ ⊢ auth+(r) ≼ pc⊓w w′ = auth−(r)⊓persist(r)⊓w
Γ,x ∶τ′,y ∶({ÐÐ⇀xi ∶ τi}r)w;pc′;H⊢ e1 ∶ τ′′,X1 Γ,x ∶τ′;pc′;H⊢ e2 ∶ τ′′,X2 ⊢ auth+(τ

′′) ≼ pc′

Γ,x ∶τ′;pc;H⊢ exists u as y ∶ e1 else e2 ∶ τ′′⊓w′,X1⊓X2 ,

where pc′ = pc⊓w′, τ = τ
′′⊓w′, and X =X1⊓X2. By the induction hypothesis, we therefore have

Γ;pc;H⊢ u{v/x} ∶ (soft {ÐÐ⇀xi ∶ τi}r)w,⊺ (3)
Γ;pc′;H⊢ e2{v/x} ∶ τ′′,X2 (4)

Suppose y = x. Then e{v/x} = exists u{v/x} as y ∶ e1 else e2{v/x}, so from (3) and (4), the result holds in this
case via an application of T-EXISTS:

Γ;pc;H⊢ u{v/x} ∶ (soft {ÐÐ⇀xi ∶ τi}r)w,⊺ ⊢ auth+(r) ≼ pc⊓w w′ = auth−(r)⊓persist(r)⊓w
Γ,y ∶({ÐÐ⇀xi ∶ τi}r)w;pc′;H⊢ e1 ∶ τ′′,X1 Γ;pc′;H⊢ e2{v/x} ∶ τ′′,X2 ⊢ auth+(τ

′′) ≼ pc′

Γ;pc;H⊢ exists u{v/x} as y ∶ e1 else e2{v/x} ∶ τ′′⊓w′,X1⊓X2 .

Alternatively, suppose y ≠ x. We have FV(v) = ∅, so e{v/x} = exists u{v/x} as y ∶ e1{v/x} else e2{v/x}. From
the typing of e, we know Γ,x ∶ τ′,y ∶ ({ÐÐ⇀xi ∶ τi}r)w;pc′;H ⊢ e1 ∶ τ

′′,X1. By the induction hypothesis, we have
Γ,y ∶({ÐÐ⇀xi ∶ τi}r)w;pc′;H⊢ e1{v/x} ∶ τ′′,X1. From this, (3), and (4), the result holds in this case via an application
of T-EXISTS:

Γ;pc;H⊢ u{v/x} ∶ (soft {ÐÐ⇀xi ∶ τi}r)w,⊺ ⊢ auth+(r) ≼ pc⊓w w′ = auth−(r)⊓persist(r)⊓w
Γ,y ∶({ÐÐ⇀xi ∶ τi}r)w;pc′;H⊢ e1{v/x} ∶ τ′′,X1 Γ;pc′;H⊢ e2{v/x} ∶ τ′′,X2 ⊢ auth+(τ

′′) ≼ pc′

Γ;pc;H⊢ exists u{v/x} as y ∶ e1{v/x} else e2{v/x} ∶ τ′′⊓w′,X1⊓X2 .
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Case T-LET (e = let y = e1 in e2):

From the typing of e, we have

Γ,x ∶τ′;pc;H⊢ e1 ∶ τ1,X1 ⊢ auth+(τ1) ≼ pc w = (⊓X1)⊓ integ(τ1)
pc′ = pc⊓w Γ,x ∶τ′,y ∶τ1;pc′;H⊢ e2 ∶ τ2,X2 ⊢ auth+(τ2) ≼ pc′

Γ,x ∶τ′;pc;H⊢ let y = e1 in e2 ∶ τ2⊓w,X1⊓X2 ,

where τ = τ2⊓w and X =X1⊓X2. By the induction hypothesis, we therefore have

Γ;pc;H⊢ e1{v/x} ∶ τ1,X1. (5)

Suppose y = x. Then e{v/x} = let x = e1{v/x} in e2, so from (5), the result holds in this case via an application of
T-LET:

Γ;pc;H⊢ e1{v/x} ∶ τ1,X1 ⊢ auth+(τ1) ≼ pc w = (⊓X1)⊓ integ(τ1)
pc′ = pc⊓w Γ,y ∶τ1;pc′;H⊢ e2 ∶ τ2,X2 ⊢ auth+(τ2) ≼ pc′

Γ;pc;H⊢ let y = e1{v/x} in e2 ∶ τ2⊓w,X1⊓X2 .

Alternatively, suppose y ≠ x. We have FV(v) = ∅, so e{v/x} = let y = e1{v/x} in e2{v/x}. From the typing of e,
we know Γ,x ∶τ′,y ∶τ1;pc′;H⊢ e2 ∶ τ2,X2. By the induction hypothesis, we have Γ,y ∶τ1;pc′;H⊢ e2{v/x} ∶ τ2,X2.
From this and (5), the result holds in this case via an application of T-LET:

Γ;pc;H⊢ e1{v/x} ∶ τ1,X1 ⊢ auth+(τ1) ≼ pc w = (⊓X1)⊓ integ(τ1)
pc′ = pc⊓w Γ,y ∶τ1;pc′;H⊢ e2{v/x} ∶ τ2,X2 ⊢ auth+(τ2) ≼ pc′

Γ;pc;H⊢ let y = e1{v/x} in e2{v/x} ∶ τ2⊓w,X1⊓X2 .

Lemma 7 (Effect bound). The effect of a well-typed expression is bounded from below by its handler environment.

Γ;pc;H⊢ e ∶ τ,X ⇒H≼X

Proof. By induction on the derivation of Γ;pc;H⊢ e ∶ τ,X . Rule T-TRY relies on the easily proved fact that ifH∪{p}≼
X1, thenH≼X1/p.

Lemma 8 (Value typing). The handler environment is irrelevant for typing non-bottom values. Such a value v can
also be typed with any pc that has the authority of the references that appear in v, and can have any effect bounded
from below by the handler environment. Formally,

Γ;pc;H⊢ v ∶ τ,X ∧(∀p. v ≠ �p∧v ≠ [�p])
∧ ⊢ auth+(τ) ≼ pc′∧ ⊢H′ ≼ X ′

⇒ Γ;pc′;H′ ⊢ v ∶ τ,X ′

Proof. By induction on the derivation of Γ;pc;H⊢ v ∶ τ,X .

We are now ready to prove type preservation for [λpersist].

Lemma 9 (Type preservation). Let M be a well-formed memory. Let e be an expression with type τ and effect X . Let
α ∈ L. If the configuration ⟨e,M⟩ takes an→α transition, then the new expression e′ will also have type τ and effect X :

⊢α

[wf] M∧∅;pc;H⊢ e ∶ τ,X
∧⟨e,M⟩ →α ⟨e′,M′⟩

⇒∅;pc;H⊢ e′ ∶ τ,X .

Proof. By induction on the derivation of ∅;pc;H⊢ e ∶ τ,X .
Given ⟨e,M⟩→α ⟨e′,M′⟩, the proof proceeds by cases according to the evaluation rules. For cases GC, α-CREATE,

α-ASSIGN, and α-FORGET, we have e = e′, so the result follows trivially.
By Lemma 7, we haveH≼X .
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Case CREATE (⟨{ÐÐÐ⇀xi = vi}S,M⟩ →α ⟨mS,M[mS ↦{
ÐÐÐ⇀
xi = v′i}]⟩, where m is fresh, S = {ÐÐ⇀xi ∶ τi}(a,p), and v′i = vi ▸α τi):

We have ∅;pc;H⊢ {ÐÐÐ⇀xi = vi}S ∶ R⊺,⊺ with R = {ÐÐ⇀xi ∶ τi}(a,a,p) and ⊢wf S ∶ rectype. We need to show ∅;pc;H⊢mS ∶
R⊺,⊺. This is given by trivial application of T-LOC.

Case APPLY (⟨(λ(x ∶τ1)[pc1;H1].e1) v,M⟩ →α ⟨e1{v/x},M⟩):

From the typing of e, we have

∅;pc;H⊢ λ(x ∶τ1)[pc1;H1].e1 ∶ (τ1
pc1,H1ÐÐÐÐ→ τ)⊺,⊺ (6)

and
∅;pc;H⊢ v ∶ τ1,⊺ (7)

with ⊢H ≼H1 andH1 = X . We need to show ∅;pc;H⊢ e1{v/x} ∶ τ,H1. From the derivation of (6), we know

x ∶τ1;pc1;H1 ⊢ e1 ∶ τ,H1

with ⊢ pc1 ≼ pc. Applying Corollary 5 to this, we get

x ∶τ1;pc;H⊢ e1 ∶ τ,H1.

The result follows from this and (7) via Lemma 6.

Case SELECT (⟨mS.xc,M⟩ →α ⟨vc ▸α p,M⟩, where M(mS) = {ÐÐÐ⇀xi = vi} and S = {ÐÐ⇀xi ∶ τi}(a,p)):

We have ∅;pc;H⊢mS.xc ∶ τc⊓ p, p and need to show ∅;pc;H⊢ vc ▸α p ∶ τc⊓ p, p.

From the typing of e, we know ∅;pc;H⊢mS ∶ ({ÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺ and ⊢ a ≼ pc with ⊢wf S ∶ rectype. Therefore,
the following holds:

• ⊢ auth+(τc) ≼ a ≼ pc and

• ⊢ auth+(τc) ≼ p.

So, we know ⊢ auth+(τc) ≼ pc⊓ p.

By Lemma 7, we have ⊢H ≼ p. Since M is well-formed, we also know that ∅;⊺;⊺ ⊢ vc ∶ τc,⊺, so by Lemma 8,
we have

∅;pc⊓ p;H⊢ vc ∶ τc, p. (8)

Suppose ⊢ α ≼ p or vc is bracketed. Then vc ▸α p = vc and the result follows from (8) via Corollary 5 and
T-SUBSUME.

Otherwise, α /≼ p and vc is unbracketed. So vc ▸α p = [vc], and the result follows via T-BRACKET:

∅;pc⊓ p;H⊢ vc ∶ τc, p α /≼ p ⊢ auth+(τc) ≼ pc⊓ p

∅;pc;H⊢ [vc] ∶ τc⊓ p, p .

Case DANGLE-SELECT (⟨mS.xc,M⟩ →α ⟨�p ▸α p,M⟩, where M(mS) = � and S = {ÐÐ⇀xi ∶ τi}(a,p)):

We have ∅;pc;H⊢mS.xc ∶ τc⊓ p, p and need to show ∅;pc;H⊢ �p ▸α p ∶ τc⊓ p, p.

From the typing of e, we know ∅;pc;H⊢mS ∶ ({ÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺ and ⊢ a ≼ pc with ⊢wf S ∶ rectype. Therefore,
the following holds:

• ⊢ auth+(τc) ≼ a ≼ pc and

• ⊢ auth+(τc) ≼ p.
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So, we know ⊢ auth+(τc) ≼ pc⊓ p.

By Lemma 7, we know ⊢H ≼ p, so by T-BOTTOM, we have

∅;pc⊓ p;H⊢ �p ∶ τc, p. (9)

Suppose ⊢ α ≼ p. Then �p ▸α p = �p and the result follows from (8) via Corollary 5 and T-SUBSUME.

Otherwise, α /≼ p. So �p ▸α p = [�p], and the result follows via T-BRACKET:

∅;pc⊓ p;H⊢ �p ∶ τc, p α /≼ p ⊢ auth+(τc) ≼ pc⊓ p

∅;pc;H⊢ [�p] ∶ τc⊓ p, p .

Case SOFT-SELECT (⟨(soft mS).xc,M⟩ →α ⟨v▸α (a⊓ p),M⟩, where S = {ÐÐ⇀xi ∶ τi}(a,p) and ⟨mS.xc,M⟩ eÐ→ ⟨v,M⟩):

From the typing of e, we have ∅;pc;H ⊢ (soft mS).xc ∶ τc ⊓ p′, p and ⊢ auth+(τc) ≼ pc, where p′ = a⊓ p. So
τ = τc⊓ p′ and X = p. We need to show ∅;pc;H⊢ v▸α p′ ∶ τc⊓ p′, p.

From the typing of e, it follows that ⊢wf S ∶ rectype, and therefore, we know ⊢ auth+(τc) ≼ p′. Since we also
know ⊢ auth+(τc) ≼ pc, we therefore have ⊢ auth+(τc) ≼ pc⊓ p′.

We proceed by cases according to the evaluation rules for ⟨mS.xc,M⟩ eÐ→ ⟨v,M⟩.

Sub-case SELECT (⟨mS.xc,M⟩ eÐ→ ⟨vc ▸α p,M⟩, where M(mS) = {ÐÐÐ⇀xi = vi}):
We have v = vc ▸α p.
By Lemma 7, we have ⊢ H ≼ p. Since M is well-formed, we also know that ∅;⊺;⊺ ⊢ vc ∶ τc,⊺, so by
Lemma 8, we have

∅;pc⊓ p′;H⊢ vc ∶ τc, p. (10)

Suppose ⊢ α ≼ p′. Then ⊢ α ≼ p, so v▸α p′ = v = vc ▸α p = vc. Similarly, if vc is bracketed, then v▸α p′ = vc.
In these cases, the result follows from (10) via Corollary 5 and T-SUBSUME.
Otherwise, α /≼ p′ and vc is unbracketed. So v▸α p′ = [vc] and the result follows via T-BRACKET:

∅;pc⊓ p′;H⊢ vc ∶ τc, p α /≼ p′ ⊢ auth+(τc) ≼ pc⊓ p′

∅;pc;H⊢ [vc] ∶ τc⊓ p′, p .

Sub-case DANGLE-SELECT (⟨mS.xc,M⟩ eÐ→ ⟨�p ▸α p,M⟩):
We have v = �p ▸α p.
By Lemma 7, we know ⊢ H ≼ p, and we have ⊢ p′ ≼ p by definition, so by T-BOTTOM, we have ∅;pc⊓
p′;H⊢ �p ∶ τc⊓ p′, p.
Suppose ⊢ α ≼ p′. Then ⊢ α ≼ p, so v▸α p′ = v = �p ▸α p = �p, and the result follows via Corollary 5.
Otherwise, α /≼ p′, so v▸α p′ = [�p], and the result follows via T-BRACKET:

∅;pc⊓ p′;H⊢ �p ∶ τc⊓ p′, p α /≼ p′ ⊢ auth+(τc) ≼ pc⊓ p′

∅;pc;H⊢ [�p] ∶ τc⊓ p′, p .

Case ASSIGN (⟨mS.xc ∶= v,M⟩ →α ⟨∗▸α p,M[mS.xc↦ v′]⟩, where S = {ÐÐ⇀xi ∶ τi}(a,p)):

From the typing of e, we have ∅;pc;H⊢mS.xc ∶= v ∶ 1, p and need to show ∅;pc;H⊢∗▸α p ∶ 1, p. By Lemma 7,
we have ⊢H ≼ p, so from T-UNIT and T-SUBSUME, we have ∅;pc⊓ p;H⊢ ∗ ∶ 1, p.

If ⊢ α ≼ p, then ∗▸α p = ∗, and the result follows by Corollary 5.

Otherwise, α /≼ p and ∗▸α p = [∗], and the result follows via T-BRACKET.

Case DANGLE-ASSIGN (⟨mS.xc ∶= v,M⟩ →α ⟨�p ▸α p,M⟩, where S = {ÐÐ⇀xi ∶ τi}(a,p)):

From the typing of e, we have ∅;pc;H ⊢ mS.xc ∶= v ∶ 1, p and we need to show ∅;pc;H ⊢ �p ▸α p ∶ 1, p. By
Lemma 7, we have ⊢H ≼ p, so by T-BOTTOM, we have ∅;pc⊓ p;H⊢ �p ∶ 1, p.

If ⊢ α ≼ p, then �p ▸α p = �p, and the result follows by Corollary 5.

Otherwise, α /≼ p and �p ▸α p = [�p], and the result follows via T-BRACKET.
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Case SOFT-ASSIGN (⟨(soft mS).xc ∶= v,M⟩→α ⟨v′ ▸α (a⊓ p),M′⟩, where ⟨mS.xc ∶= v,M⟩ eÐ→⟨v′,M′⟩ and S={ÐÐ⇀xi ∶ τi}(a,p)):

From the typing of e, we have ∅;pc;H ⊢ (soft mS).xc ∶= v ∶ 1, p. By Lemma 7, we have ⊢ H ≼ p. Let p′ =
a⊓ p. We need to show ∅;pc;H ⊢ v′ ▸α p′ ∶ 1, p. We proceed by cases according to the evaluation rules for
⟨mS.xc ∶= v,M⟩ eÐ→ ⟨v′,M′⟩.

Sub-case ASSIGN (⟨mS.xc ∶= v,M⟩ eÐ→ ⟨∗▸α p,M′⟩):
We have v′ = ∗▸α p.
If ⊢ α ≼ p′, then ⊢ α ≼ p, so v′ ▸α p′ = v′ = ∗▸α p = ∗. The result follows from T-UNIT and T-SUBSUME.
Otherwise, α /≼ p′, so v′ ▸α p′ = [∗]. The result follows from T-UNIT, T-BRACKET, and T-SUBSUME.

Sub-case DANGLE-ASSIGN (⟨mS.xc ∶= v,M⟩ eÐ→ ⟨�p ▸α p,M⟩):
We have v′ = �p ▸α p.
If ⊢ α ≼ p′, then ⊢ α ≼ p, so v′ ▸α p′ = v′ = �p ▸α p = �p. The result follows from T-BOTTOM.
Otherwise, α /≼ p′, so v′ ▸α p′ = [�p]. The result follows from T-BOTTOM and T-BRACKET.

Case EXISTS-TRUE (⟨exists soft mS as x ∶ e1 else e2,M⟩ →α ⟨(e1{mS/x})▸α w,M⟩, where S = {ÐÐ⇀xi ∶ τi}(a,p) and w =
a⊓ p):

From the typing of e, we have

∅;pc;H⊢ soft mS ∶ (soft {ÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺ ⊢ a ≼ pc w = a⊓ p
x ∶({ÐÐ⇀xi ∶ τi}(a,a,p))⊺;pc⊓w;H⊢ e1 ∶ τ′,X1 ∅;pc⊓w;H⊢ e2 ∶ τ′,X2 ⊢ auth+(τ

′) ≼ pc⊓w

∅;pc;H⊢ exists soft mS as x ∶ e1 else e2 ∶ τ′⊓w,X1⊓X2

where τ = τ
′⊓w and X =X1⊓X2. We need to show

∅;pc;H⊢ (e1{mS/x})▸α w ∶ τ,X .

By T-LOC, we have ∅;pc⊓w;H ⊢ mS ∶ ({ÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺. Therefore, by Lemma 6, we know ∅;pc⊓w;H ⊢
e1{mS/x} ∶ τ′,X1. Also, by Lemma 7, we know ⊢H ≼X1⊓X2, so by T-SUBSUME, we know

∅;pc⊓w;H⊢ e1{mS/x} ∶ τ,X .

Suppose ⊢ α ≼w. Then (e1{mS/x})▸α w = e1{mS/x}. The result therefore follows by Corollary 5.

Otherwise, we have α /≼w, so (e1{mS/x})▸α w = [e1{mS/x}]. The result therefore follows via T-BRACKET:

∅;pc⊓w;H⊢ e1{mS/x} ∶ τ′⊓w,X α /≼w ⊢ auth+(τ
′) ≼ pc⊓w

∅;pc;H⊢ [e1{mS/x}] ∶ τ′⊓w,X

Case EXISTS-FALSE (⟨exists soft mS as x ∶ e1 else e2,M⟩ →α ⟨e2 ▸α w,M⟩, where S = {ÐÐ⇀xi ∶ τi}(a,p) and w = a⊓ p):

From the typing of e, we have

∅;pc;H⊢ soft mS ∶ (soft {ÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺ ⊢ a ≼ pc w = a⊓ p
x ∶({ÐÐ⇀xi ∶ τi}(a,a,p))⊺;pc⊓w;H⊢ e1 ∶ τ′,X1 ∅;pc⊓w;H⊢ e2 ∶ τ′,X2 ⊢ auth+(τ

′) ≼ pc⊓w

∅;pc;H⊢ exists soft mS as x ∶ e1 else e2 ∶ τ′⊓w,X1⊓X2

where τ = τ
′⊓w and X =X1⊓X2. We need to show ∅;pc;H⊢ e2 ▸α w ∶ τ,X .

Suppose ⊢ α ≼w. Then e2 ▸α w = e2. The result follows from Corollary 5 and T-SUBSUME.

Otherwise, α /≼w, so e2 ▸α w = [e2]. By Lemma 7, we know ⊢H ≼X1⊓X2. The result follows via T-BRACKET
and T-SUBSUME:

∅;pc⊓w;H⊢ e2 ∶ τ′,X2 α /≼w ⊢ auth+(τ
′) ≼ pc⊓w

∅;pc;H⊢ [e2] ∶ τ′⊓w,X2 ⊢H ≼X1⊓X2 ⊢X1⊓X2 ≼ X2

∅;pc;H⊢ [e2] ∶ τ′⊓w,X1⊓X2
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Case TRY-VAL (⟨try v catch p∶ e1,M⟩ →α ⟨v,M⟩, where v ≠ �p′ and v ≠ [�p′] for all p′):

From the typing of e, we have
∅;pc;H, p ⊢ v ∶ τ,X1,

for some X1. Since v is a non-bottom value, the result ∅;pc;H⊢ v ∶ τ,X follows via Lemma 8.

Case TRY-CATCH (⟨try �p catch p′∶ e2,M⟩ →α ⟨e2,M⟩, where ⊢ p′ ≼ p):

We have p′ ≼ p, so from the typing of e, we have

∅;pc⊓ p⊓ integ(τ1);H⊢ e2 ∶ τ1,X ,

where τ = τ1⊓ p. We need to show ∅;pc;H⊢ e2 ∶ τ,X . This follows from Corollary 5 and T-SUBSUME.

Case TRY-ESC (⟨try �p catch p′∶ e2,M⟩ →α ⟨�p,M⟩, where p′ /≼ p):

We have p′ /≼ p, so from the typing of e, it follows that H ≼ X ≼ p. We need to show ∅;pc;H ⊢ �p ∶ τ,X . This
follows from T-BOTTOM and T-SUBSUME.

Case PARALLEL-RESULT (⟨v1∥v2,M⟩ →α ⟨∗,M⟩):

From the typing of e, we have τ = 1 and X = ⊺. The result ∅;pc;H⊢ ∗ ∶ 1,⊺ follows trivially from T-UNIT.

Case IF-TRUE (⟨if true then e1 else e2),M⟩ →α ⟨e1,M⟩):

From the typing of e, we have ∅;pc;H⊢ e1 ∶ τ,X1, where X ≼ X1. We need to show ∅;pc;H⊢ e1 ∶ τ,X , which
follows from Lemma 7 and T-SUBSUME.

Case IF-FALSE (⟨if false then e1 else e2,M⟩ →α ⟨e2,M⟩):

From the typing of e, we have ∅;pc;H⊢ e2 ∶ τ,X2, where X ≼ X2. We need to show ∅;pc;H⊢ e2 ∶ τ,X , which
follows from Lemma 7 and T-SUBSUME.

Case LET (⟨let x = v in e1,M⟩ →α ⟨e1{v/x},M⟩, where v /∈ {�p,[�p]} for all p):

Since v is a non-bottom value, by Lemma 8, it can be typed with ⊺ effect. From the typing of e, then, we have

∅;pc;H⊢ v ∶ τ1,⊺

and
x ∶τ1;pc⊓ integ(τ1);H⊢ e1 ∶ τ,X .

We need to show ∅;pc;H⊢ e1{v/x} ∶ τ,X , which follows from Corollary 5 and Lemma 6.

Case EVAL-CONTEXT (⟨E[e1],M⟩ →α ⟨E[e′1],M′⟩, where ⟨e1,M⟩ eÐ→ ⟨e′1,M′⟩):

We need to show ∅;pc;H⊢ E[e′1] ∶ τ,X . We proceed by cases according to the structure of E[e1].

Case soft e1:
From the typing of e, we have ∅;pc;H⊢ e1 ∶ Rw,X , where τ = (soft R)w. By the induction hypothesis, we
have ∅;pc;H⊢ e′1 ∶ Rw,X , so the result follows via T-SOFT.

Cases e1∥e2 and e2∥e1:
We show case e1∥e2. The other case follows symmetrically. From the typing of e, we have ∅;pc;⊺ ⊢ e1 ∶
τ1,⊺. By the induction hypothesis, we have ∅;pc;⊺ ⊢ e′1 ∶ τ1,⊺, so the result follows via T-PARALLEL.

Case try e1 catch p∶ e2:
From the typing of e, we have ∅;pc;H, p ⊢ e1 ∶ τ1,X1, where τ = τ1 ⊓w with w = ⊓p′∈X1(p⊔ p′) and
X = (X1/p)⊓X2. By the induction hypothesis, we have ∅;pc;H, p ⊢ e′1 ∶ τ1,X1, so the result follows via
T-TRY.

Case let x = e1 in e2:
From the typing of e, we have∅;pc;H⊢ e1 ∶ τ1,X1, where ⊢ auth+(τ1) ≼ pc and ⊢X1 ≼X . By the induction
hypothesis, we have ∅;pc;H⊢ e′1 ∶ τ1,X1, so the result follows via T-LET.
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Case FAIL-PROP (⟨F[�p],M⟩ →α ⟨�p,M⟩):

We have ∅;pc;H⊢ e ∶ τ,X and need to show ∅;pc;H⊢�p ∶ τ,X . From the typing of e, it follows that ⊢H ≼X ≼
p ≠ ⊺, so the result follows from T-BOTTOM and T-SUBSUME.

Case BRACKET-SELECT (⟨[mS].xc,M⟩ →α ⟨[mS.xc],M⟩):

Without loss of generality, assume S = {ÐÐ⇀xi ∶ τi}(a,p). Then, from the typing of e, we have

∅;pc⊓w;H⊢mS ∶ ({ÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺
α /≼w ⊢ a ≼ pc⊓w

∅;pc;H⊢ [mS] ∶ ({ÐÐ⇀xi ∶ τi}(a,a,p))w,⊺ ⊢ a ≼ pc w′ =w⊓ p ⊢H ≼ p

∅;pc;H⊢ [mS].xc ∶ τc⊓w′, p ,

where τ = τc⊓w′ and X = p. We need to show ∅;pc;H⊢ [mS.xc] ∶ τc⊓w′, p.

By the typing of mS, we know ⊢wf S ∶ rectype, and so, ⊢ auth+(τc) ≼ a ≼ pc⊓w. Therefore, the result follows
from an application of T-SELECT, followed by T-BRACKET:

∅;pc⊓w;H⊢mS ∶ ({ÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺
⊢ a ≼ pc⊓w ⊢H ≼ p

∅;pc⊓w;H⊢mS.xc ∶ τc⊓ p, p α /≼w ⊢ auth+(τc) ≼ pc⊓w

∅;pc;H⊢ [mS.xc] ∶ τc⊓w′, p .

Case BRACKET-SOFT-SELECT (⟨[soft mS].xc,M⟩ →α ⟨[(soft mS).xc],M⟩):

Without loss of generality, assume S = {ÐÐ⇀xi ∶ τi}(a,p). Then, from the typing of e, we have

∅;pc⊓w;H⊢ soft mS ∶ (soft {ÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺
α /≼w ⊢ a ≼ pc⊓w

∅;pc;H⊢ [soft mS] ∶ (soft {ÐÐ⇀xi ∶ τi}(a,a,p))w,⊺ ⊢ auth+(τc) ≼ pc w′ =w⊓a⊓ p ⊢H ≼ p

∅;pc;H⊢ [soft mS].xc ∶ τc⊓w′, p ,

where τ = τc⊓w′ and X = p. We need to show ∅;pc;H⊢ [(soft mS).xc] ∶ τc⊓w′, p.

By the typing of mS, we know ⊢wf S ∶ rectype, and so, ⊢ auth+(τc) ≼ a ≼ pc⊓w. Therefore, the result follows
from T-SOFT-SELECT and T-BRACKET:

∅;pc⊓w;H⊢ soft mS ∶ (soft {ÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺
⊢ auth+(τc) ≼ pc⊓w w′ =w⊓a⊓ p ⊢H ≼ p

∅;pc⊓w;H⊢ (soft mS).xc ∶ τc⊓w′, p α /≼w ⊢ auth+(τc) ≼ pc⊓w

∅;pc;H⊢ [(soft mS).xc] ∶ τc⊓w′, p .

Case BRACKET-ASSIGN (⟨[mS].xc ∶= v,M⟩ →α ⟨[mS.xc ∶= v],M⟩):

Without loss of generality, assume S = {ÐÐ⇀xi ∶ τi}(a,p). Then, from the typing of e, we have

∅;pc⊓w;H⊢mS ∶ ({ÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺
α /≼w ⊢ a ≼ pc⊓w

∅;pc;H⊢ [mS] ∶ ({ÐÐ⇀xi ∶ τi}(a,a,p))w,⊺ ⊢ a ≼ pc ∅;pc;H⊢ v ∶ τ′,⊺
⊢ τ

′⊓pc⊓w ≤ τc ⊢ auth+(τ
′) ≼ pc⊓w ⊢H ≼ p

∅;pc;H⊢ [mS].xc ∶= v ∶ 1, p ,

where τ = 1 and X = p. We need to show ∅;pc;H⊢ [mS.xc ∶= v] ∶ 1, p.
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From ⊢ auth+(τ
′) ≼ pc⊓w and Lemma 8, we know ∅;pc⊓w;H ⊢ v ∶ τ

′,⊺. The result then follows from an
application of T-ASSIGN followed by T-BRACKET:

∅;pc⊓w;H⊢mS ∶ ({ÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺ ⊢ a ≼ pc
∅;pc⊓w;H⊢ v ∶ τ′,⊺ ⊢ τ

′⊓pc⊓w ≤ τc
⊢ auth+(τ

′) ≼ pc⊓w ⊢H ≼ p

∅;pc⊓w;H⊢mS.xc ∶= v ∶ 1, p α /≼w

∅;pc;H⊢ [mS.xc ∶= v] ∶ 1, p .

Case BRACKET-SOFT-ASSIGN
(⟨[soft mS].xc ∶= v,M⟩ →α ⟨[(soft mS).xc ∶= v],M⟩):

Without loss of generality, assume S = {ÐÐ⇀xi ∶ τi}(a,p). Then, from the typing of e, we have

∅;pc⊓w;H⊢ soft mS ∶ (soft {ÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺
α /≼w ⊢ a ≼ pc⊓w

∅;pc;H⊢ [soft mS] ∶ (soft {ÐÐ⇀xi ∶ τi}(a,a,p))w,⊺ ∅;pc;H⊢ v ∶ τ′,⊺
⊢ τ

′⊓pc⊓w ≤ τc ⊢ auth+(τ
′) ≼ pc⊓w ⊢H ≼ p

∅;pc;H⊢ [soft mS].xc ∶= v ∶ ∗, p ,

where τ = 1 and X = p. We need to show ∅;pc;H⊢ [(soft mS).xc ∶= v] ∶ 1, p.

From ⊢ auth+(τ
′) ≼ pc⊓w and Lemma 8, we know ∅;pc⊓w;H⊢ v ∶ τ′,⊺. The result then follows from T-SOFT-

ASSIGN and T-BRACKET:

∅;pc⊓w;H⊢ soft mS ∶ (soft {ÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺
∅;pc⊓w;H⊢ v ∶ τ,⊺ ⊢ τ

′⊓pc⊓w ≤ τc ⊢ auth+(τ
′) ≼ pc⊓w ⊢H ≼ p

∅;pc⊓w;H⊢ (soft mS).xc ∶= v ∶ 1, p α /≼w

∅;pc;H⊢ [(soft mS).xc ∶= v] ∶ 1, p .

Case BRACKET-SOFT (⟨soft [mS],M⟩ →α ⟨[soft mS],M⟩):

Without loss of generality, assume S = {ÐÐ⇀xi ∶ τi}(a,p). Then, from the typing of e, we have

∅;pc⊓w;H⊢mS ∶ ({ÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺
α /≼w ⊢ a ≼ pc⊓w

∅;pc;H⊢ [mS] ∶ ({ÐÐ⇀xi ∶ τi}(a,a,p))w,⊺
∅;pc;H⊢ soft [mS] ∶ (soft {ÐÐ⇀xi ∶ τi}(a,a,p))w,⊺ ,

where τ = (soft {ÐÐ⇀xi ∶ τi}(a,a,p))w andX =⊺. We need to show∅;pc;H⊢[soft mS] ∶ (soft {ÐÐ⇀xi ∶ τi}(a,a,p))w,⊺. This
follows via an application of T-SOFT followed by T-BRACKET:

∅;pc⊓w;H⊢mS ∶ ({ÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺
∅;pc⊓w;H⊢ soft mS ∶ (soft {ÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺ α /≼w

∅;pc;H⊢ [soft mS] ∶ (soft {ÐÐ⇀xi ∶ τi}(a,a,p))w,⊺ .

Case BRACKET-EXISTS
(⟨exists [v] as x ∶ e1 else e2,M⟩ →α ⟨[exists v as x ∶ e1 else e2],M⟩):

From the typing of e, we have

∅;pc⊓`;H⊢ v ∶ (soft {ÐÐ⇀xi ∶ τi}r)w,⊺
α /≼ ` ⊢ auth+(r) ≼ pc⊓`

∅;pc;H⊢ [v] ∶ (soft {ÐÐ⇀xi ∶ τi}r)w⊓`,⊺ ⊢ auth+(r) ≼ pc⊓w⊓` w′ = auth−(r)⊓persist(r)⊓w⊓`
x ∶ ({ÐÐ⇀xi ∶ τi}r)w⊓`;pc⊓w′;H⊢ e1 ∶ τ′,X1 ∅;pc⊓w′;H⊢ e2 ∶ τ′,X2 ⊢ auth+(τ

′) ≼ pc⊓w′

∅;pc;H⊢ exists [v] as x ∶ e1 else e2 ∶ τ′⊓w′,X1⊓X2
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where τ = τ
′⊓w′ and X =X1⊓X2. We need to show ∅;pc;H⊢ [exists v as x ∶ e1 else e2] ∶ τ′⊓w′,X1⊓X2. To do

this, we need to know that x ∶ ({ÐÐ⇀xi ∶ τi}r)w;pc⊓w′;H⊢ e1 ∶ τ′,X1, which can be demonstrated by an easy induction
on the derivation of x ∶ ({ÐÐ⇀xi ∶ τi}r)w⊓`;pc⊓w′;H ⊢ e1 ∶ τ′,X1. The result therefore follows via an application of
T-EXISTS and T-BRACKET.

∅;pc⊓`;H⊢ v ∶ (soft {ÐÐ⇀xi ∶ τi}r)w,⊺ ⊢ auth+(r) ≼ pc⊓w⊓` w′′ = auth−(r)⊓persist(r)⊓w
x ∶ ({ÐÐ⇀xi ∶ τi}r)w;pc⊓`⊓w′′;H⊢ e1 ∶ τ′,X1 ∅;pc⊓`⊓w′′;H⊢ e2 ∶ τ′,X2 ⊢ auth+(τ

′) ≼ pc⊓`⊓w′′

∅;pc⊓`;H⊢ exists v as x ∶ e1 else e2 ∶ τ′⊓w′′,X1⊓X2
α /≼ ` ⊢ auth+(τ

′⊓w′′) ≼ pc⊓`⊓w′′ ≼ pc⊓`
∅;pc;H⊢ [exists v as x ∶ e1 else e2] ∶ τ′⊓w′,X1⊓X2

(Note that w′ = `⊓w′′.)

Case BRACKET-APPLY
(⟨[λ(x ∶τ1)[pc1;H1].e1] v2,M⟩ →α ⟨[(λ(x ∶τ1)[pc1;H1].e1) v2],M⟩):

From the typing of e, we have

x ∶τ1;pc1;H1 ⊢ e1 ∶ τ′,H1

⊢wf (τ1
pc1,H1ÐÐÐÐ→ τ

′)⊺ ∶ type ⊢ pc1 ≼ pc⊓w

∅;pc⊓w;H⊢ λ(x ∶τ1)[pc1;H1].e1 ∶ (τ1
pc1,H1ÐÐÐÐ→ τ

′)⊺,⊺
α /≼w ⊢ pc1 ≼ pc⊓w

∅;pc;H⊢ [λ(x ∶τ1)[pc1;H1].e1] ∶ (τ1
pc1,H1ÐÐÐÐ→ τ

′)w,⊺
∅;pc;H⊢ v2 ∶ τ1,⊺ ⊢ pc1 ≼ pc⊓w ⊢H ≼H1

∅;pc;H⊢ [λ(x ∶τ1)[pc1;H1].e1] v2 ∶ τ′⊓w,H1 ,

where τ = τ
′⊓w and X =H1. We need to show ∅;pc;H⊢ [(λ(x ∶τ1)[pc1;H1].e1) v2] ∶ τ′⊓w,H1.

By WT2, from ⊢wf (τ1
pc1,H1ÐÐÐÐ→ τ

′)⊺ ∶ type, we know ⊢ auth+(τ1)⊔auth+(τ
′) ≼ pc1. Since we also know from

the above derivation that ⊢ pc1 ≼ pc⊓w, it therefore follows that

⊢ auth+(τ1) ≼ pc⊓w (11)

and ⊢ auth+(τ
′) ≼ pc⊓w. From the above derivation, we also have ∅;pc;H ⊢ v2 ∶ τ1,⊺. Applying Lemma 8 to

this and (11), we have ∅;pc⊓w;H ⊢ v2 ∶ τ1,⊺. The result then follows from an application of T-APP followed
by T-BRACKET:

∅;pc⊓w;H⊢ λ(x ∶τ1)[pc1;H1].e1 ∶ (τ1
pc1,H1ÐÐÐÐ→ τ

′)⊺,⊺
∅;pc⊓w;H⊢ v2 ∶ τ1,⊺ ⊢ pc1 ≼ pc⊓w ⊢H ≼H1

∅;pc⊓w;H⊢ (λ(x ∶τ1)[pc1;H1].e1) v2 ∶ τ′,H1 α /≼w ⊢ auth+(τ
′) ≼ pc⊓w

∅;pc;H⊢ [(λ(x ∶τ1)[pc1;H1].e1) v2] ∶ τ′⊓w,H1 .

Case BRACKET-TRY (⟨try [v] catch p∶ e2,M⟩ →α ⟨[try v catch p∶ e2],M⟩):

From the typing of e, we have

∅;pc⊓`;H, p ⊢ v ∶ τ′,X1
α /≼ ` ⊢ auth+(τ

′) ≼ pc⊓`
∅;pc;H, p ⊢ [v] ∶ τ′⊓`,X1 w = ⊓

p′∈X1

(p⊔ p′)

∅;pc⊓w⊓ integ(τ
′⊓`);H⊢ e2 ∶ τ′⊓`,X2 ⊢ auth+(τ

′⊓`) ≼ pc

∅;pc;H⊢ try [v] catch p∶ e2 ∶ τ′⊓`⊓w,(X1/p)⊓X2 ,
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where τ = τ
′⊓`⊓w and X = (X1/p)⊓X2.

We need to show
∅;pc;H⊢ [try v catch p∶ e2] ∶ τ′⊓`⊓w,(X1/p)⊓X2.

Note that integ(τ
′⊓`) = integ(τ

′)⊓` and auth+(τ
′) = auth+(τ

′⊓`) = auth+(τ
′⊓`⊓w). The result then follows

from S3, T-SUBSUME, T-TRY, and T-BRACKET:

∅;pc⊓`;H, p ⊢ v ∶ τ′,X1

⊢ integ(τ
′)⊓` ≼ integ(τ

′)
⊢ τ

′ ≤ τ
′⊓`

∅;pc⊓`;H, p ⊢ v ∶ τ′⊓`,X1 w = ⊓
p′∈X1

(p⊔ p′)

∅;pc⊓`⊓w⊓ integ(τ
′⊓`);H⊢ e2 ∶ τ′⊓`,X2 ⊢ auth+(τ

′⊓`) ≼ pc⊓`
∅;pc⊓`;H⊢ try v catch p∶ e2 ∶ τ′⊓`⊓w,(X1/p)⊓X2

α /≼ ` ⊢ auth+(τ
′⊓`⊓w) ≼ pc⊓`

∅;pc;H⊢ [try v catch p∶ e2] ∶ τ′⊓`⊓w,(X1/p)⊓X2 .

Case BRACKET-IF (⟨if [v] then e1 else e2,M⟩ →α ⟨[if v then e1 else e2],M⟩):

From the typing of e, we have

∅;pc⊓`;H⊢ v ∶ boolw,⊺ α /≼ `
∅;pc;H⊢ [v] ∶ boolw⊓`,⊺ ∅;pc⊓w⊓`;H⊢ ei ∶ τ′,Xi

(∀i) ⊢ auth+(τ
′) ≼ pc⊓w⊓`

∅;pc;H⊢ if [v] then e1 else e2 ∶ τ′⊓w⊓`,X1⊓X2 ,

where τ = τ
′⊓w⊓` and X =X1⊓X2. We need to show ∅;pc;H⊢ [if v then e1 else e2] ∶ τ′⊓w⊓`,X1⊓X2.

Since auth+(τ
′⊓w) = auth+(τ

′) and ⊢ pc⊓w⊓` ≼ pc⊓`, we therefore have ⊢ auth+(τ
′⊓w) ≼ pc⊓`. The result

then follows from T-IF and T-BRACKET:

∅;pc⊓`;H⊢ v ∶ boolw,⊺
∅;pc⊓`⊓w;H⊢ ei ∶ τ′,Xi

(∀i) ⊢ auth+(τ
′) ≼ pc⊓`⊓w

∅;pc⊓`;H⊢ if v then e1 else e2 ∶ τ′⊓w,X1⊓X2 α /≼ ` ⊢ auth+(τ
′⊓w) ≼ pc⊓`

∅;pc;H⊢ [if v then e1 else e2] ∶ τ′⊓w⊓`,X1⊓X2 .

Case BRACKET-LET (⟨let x = [v] in e1,M⟩ →α ⟨[e1{[v]/x}],M⟩, where v ≠ �p for all p):

By Lemma 8, we know [v] can be typed with ⊺ effect. Therefore, from the typing of e, we have

∅;pc⊓`;H⊢ v ∶ τ′′,⊺
α /≼ ` ⊢ auth+(τ

′′) ≼ pc⊓`
∅;pc;H⊢ [v] ∶ τ′′⊓`,⊺ ⊢ auth+(τ

′′⊓`) ≼ pc
w = integ(τ

′′⊓`) x ∶τ′′⊓`;pc⊓w;H⊢ e1 ∶ τ′,X ⊢ auth+(τ
′) ≼ pc⊓w

∅;pc;H⊢ let x = [v] in e1 ∶ τ′⊓w,X ,

where τ = τ
′⊓w. We need to show ∅;pc;H⊢ [e1{[v]/x}] ∶ τ′⊓w,X .

From the derivation above, we know∅;pc;H⊢[v] ∶ τ′′⊓`,⊺. Since auth+(τ
′′⊓`)= auth+(τ

′′), from ⊢ auth+(τ
′′)≼

pc⊓` above, we have ⊢ auth+(τ
′′⊓`) ≼ pc⊓`. Therefore, by Lemma 8, we know

∅;pc⊓`;H⊢ [v] ∶ τ′′⊓`,⊺. (12)

From the derivation above, we also know x ∶τ′′⊓`;pc⊓w;H⊢ e1 ∶ τ′,X . By definition, ⊢w ≼ `, so by Corollary 5,
we know x ∶τ′′⊓`;pc⊓`;H⊢ e1 ∶ τ′,X . Applying Lemma 6 to this and (12), we have

∅;pc⊓`;H⊢ e1{[v]/x} ∶ τ′⊓w,X .
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Since auth+(τ
′⊓w) = auth+(τ

′) and ⊢w ≼ `, from ⊢ auth+(τ
′) ≼ pc⊓w above, we have

⊢ auth+(τ
′⊓w) ≼ pc⊓`.

Finally, by Lemma 7, we have ⊢H ≼X .

The result, then, follows from T-SUBSUME and T-BRACKET:

∅;pc⊓`;H⊢ e1{[v]/x} ∶ τ′⊓w,X
⊢H ≼X

∅;pc⊓`;H⊢ e1{[v]/x} ∶ τ′⊓w,X α /≼ ` ⊢ auth+(τ
′⊓w) ≼ pc⊓`

∅;pc;H⊢ [e1{[v]/x}] ∶ τ′⊓w⊓`,X .

Case DOUBLE-BRACKET (⟨[[v]],M⟩ →α ⟨[v],M⟩):

From the typing of e, we have

∅;pc⊓`;H⊢ [v] ∶ τ′,X α /≼ ` ⊢ auth+(τ
′) ≼ pc⊓`

∅;pc;H⊢ [[v]] ∶ τ′⊓`,X ,

where τ = τ
′⊓ `. We need to show ∅;pc;H⊢ [v] ∶ τ′⊓ `,X . By Corollary 5, we know ∅;pc;H⊢ [v] ∶ τ′,X . The

result then follows via S3 and T-SUBSUME:

∅;pc;H⊢ [v] ∶ τ′,X
⊢ integ(τ

′)⊓` ≼ integ(τ
′)

⊢ τ
′ ≤ τ

′⊓`
∅;pc;H⊢ [v] ∶ τ′⊓`,X .

Case BRACKET-CONTEXT (⟨[e1],M⟩ →α ⟨[e′1],M′⟩, where ⟨e1,M⟩ →α ⟨e′1,M′⟩):

From the typing of e, we have

∅;pc⊓`;H⊢ e1 ∶ τ′,X α /≼ ` ⊢ auth+(τ
′) ≼ pc⊓`

∅;pc;H⊢ [e1] ∶ τ′⊓`,X ,

where τ = τ
′⊓`. We need to show ∅;pc;H⊢ [e′1] ∶ τ,X .

By the induction hypothesis, we have ∅;pc⊓`;H⊢ e′1 ∶ τ′,X . The result follows by T-BRACKET:

∅;pc⊓`;H⊢ e′1 ∶ τ′,X α /≼ ` ⊢ auth+(τ
′) ≼ pc⊓`

∅;pc;H⊢ [e′1] ∶ τ′⊓`,X .

Case BRACKET-FAIL (⟨F[[�p]],M⟩ →α ⟨[�p],M⟩):

We need to show ∅;pc;H⊢ [�p] ∶ τ,X . We proceed by cases according to the structure of F[[�p]].

Case soft [�p]:
From the typing of e, we have

p ≠ ⊺ ⊢H ≼ p

∅;pc⊓w;H⊢ �p ∶ R⊺, p α /≼w ⊢ auth+(R⊺) ≼ pc⊓w

∅;pc;H⊢ [�p] ∶ Rw, p

∅;pc;H⊢ soft [�p] ∶ (soft R)w, p ,

where τ = (soft R)w and X = p. The result follows via T-BOTTOM and T-BRACKET:

p ≠ ⊺ ⊢H ≼ p

∅;pc⊓w;H⊢ �p ∶ (soft R)⊺, p α /≼w ⊢ auth+((soft R)⊺) ≼ pc⊓w

∅;pc;H⊢ [�p] ∶ (soft R)w, p .
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Case let x = [�p] in e2:
From the typing of e, we have

p ≠ ⊺ ⊢H ≼ p

∅;pc⊓`;H⊢ �p ∶ τ1, p α /≼ ` ⊢ auth+(τ1) ≼ pc⊓`
∅;pc;H⊢ [�p] ∶ τ1⊓`, p

⊢ auth+(τ1⊓`) ≼ pc w = p⊓ integ(τ1⊓`)
x ∶τ1⊓`;pc⊓w;H⊢ e2 ∶ τ2,X2 ⊢ auth+(τ2) ≼ pc⊓w

∅;pc;H⊢ let x = [�p] in e2 ∶ τ2⊓w,X2⊓ p ,

where τ = τ2⊓w and X =X2⊓ p. By construction, ⊢w ≼ `, so we know α /≼w. By Lemma 7, we also know
⊢H ≼X2⊓ p. The result follows via T-BOTTOM, T-BRACKET and T-SUBSUME:

p ≠ ⊺ ⊢H ≼ p

∅;pc⊓w;H⊢ �p ∶ τ2, p
α /≼w ⊢ auth+(τ2) ≼ pc⊓w

∅;pc;H⊢ [�p] ∶ τ2⊓w, p ⊢H ≼X2⊓ p ⊢X2⊓ p ≼ X2

∅;pc;H⊢ [�p] ∶ τ2⊓w,X2⊓ p .

We now show that well-formedness is also preserved during execution.

Lemma 10 (Well-formedness preservation). If ⟨e,M⟩ is a well-formed configuration wherein e is well-typed, and
⟨e,M⟩ takes an →α transition, then the new configuration ⟨e′,M′⟩ will also be well-formed:

⊢α

[wf] ⟨e,M⟩∧∅;pc;H⊢ e ∶ τ,X ∧⟨e,M⟩ →α ⟨e′,M′⟩⇒⊢α

[wf] ⟨e
′,M′⟩ .

Proof. First, note that dom(M) ⊆ dom(M′). This can be shown by an easy induction on the derivation of ⟨e,M⟩ →α

⟨e′,M′⟩.
We prove the lemma by induction on the derivation of ⟨e,M⟩ →α ⟨e′,M′⟩. Given ⟨e,M⟩ →α ⟨e′,M′⟩, the proof

proceeds by cases according to the evaluation rules.
Rules DANGLE-SELECT, DANGLE-ASSIGN, PARALLEL-RESULT, TRY-ESC, FAIL-PROP, and BRACKET-FAIL,

are trivial base cases in which locs(e′) = ∅ and M′ =M. Rules SELECT, and SOFT-SELECT follow from the definition
of ⊢α

[wf] M.
Rules APPLY, EXISTS-TRUE, EXISTS-FALSE, TRY-VAL, TRY-CATCH, IF-TRUE, IF-FALSE, LET, BRACKET-

SELECT, BRACKET-SOFT-SELECT, BRACKET-ASSIGN, BRACKET-SOFT-ASSIGN, BRACKET-SOFT, BRACKET-EXISTS,
BRACKET-APPLY, BRACKET-TRY, BRACKET-IF, BRACKET-LET, and DOUBLE-BRACKET follow because in these
cases, locs(e′) ⊆ locs(e), M′ =M, and root(mS,e′)⇒ root(mS,e).

Rule GC follows from the fact that ⊢α

[wf] M and that minimal collectible groups must be disjoint.
Rules α-CREATE and α-ASSIGN follow trivially from the transition rules.
Rule α-FORGET follows from the fact that ⊢α

[wf] M.

Case CREATE (⟨{ÐÐÐ⇀xi = vi}S,M⟩ →α ⟨mS,M[mS ↦{ÐÐÐÐÐÐ⇀xi = vi ▸α τi}]⟩, where mS is fresh and S = {ÐÐ⇀xi ∶ τi}s):

We show ∅;⊺;⊺ ⊢ vi ∶ τi,⊺ for arbitrary i; the rest of this case follows from ⊢α

[wf] ⟨e,M⟩.
From the typing of e, we have ∅;pc;H⊢ vi ∶ τi,⊺. From this, the result follows via Lemma 8 and T-BRACKET.

Case ASSIGN (⟨mS.xc ∶= v,M⟩ →α ⟨∗▸α p,M[mS ↦ v▸α τc]⟩, where S = {ÐÐ⇀xi ∶ τi}(a,p)):

From the typing of e and by T-SUBSUME, we have ∅;pc;H⊢ v ∶ τc,⊺. By Lemma 8, we have ∅;⊺;⊺ ⊢ v ∶ τc,⊺,
and the rest of this case follows from ⊢α

[wf] ⟨e,M⟩.

Case SOFT-ASSIGN (⟨(soft mS).xc ∶= v,M⟩→α ⟨v′ ▸α (a⊓ p),M′⟩, where ⟨mS.xc ∶= v,M⟩ eÐ→⟨v′,M′⟩ and S={ÐÐ⇀xi ∶ τi}(a,p)):

If M(mS) = �, then we have locs(e′) = ∅ and M′ =M, and the result follows.

Otherwise, M(mS) ≠ �, so from the definition of ⊢α

[wf] ⟨(soft mS).xc ∶= v,M⟩, we can obtain ⊢α

[wf] ⟨m
S.xc ∶= v,M⟩,

and the rest follows similarly to the previous case.
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Case EVAL-CONTEXT (⟨E[e1],M⟩ →α ⟨E[e′1],M′⟩, where ⟨e1,M⟩ eÐ→ ⟨e′1,M′⟩):
Since ⊢α

[wf] ⟨e,M⟩, we know ⊢α

[wf] ⟨e1,M⟩. Proceeding by cases according to the structure of E[e1], in each
case we have ∅;pc1;H1 ⊢ e1 ∶ τ1,X1 (for some pc1, H1, τ1, and X1). So, by the induction hypothesis, we have
⊢α

[wf] ⟨e
′
1,M

′⟩. From this and the fact that ⊢α

[wf] ⟨e,M⟩, the result follows.

Case BRACKET-CONTEXT (⟨[e1],M⟩ →α ⟨[e′1],M′⟩, where ⟨e1,M⟩ eÐ→ ⟨e′1,M′⟩):
Since ⊢α

[wf] ⟨e,M⟩, we know ⊢α

[wf] ⟨e1,M⟩. From the typing of e, we have ∅;pc′;H ⊢ e1 ∶ τ1,X , for some
appropriate pc′ and τ1. So, by the induction hypothesis, we have ⊢α

[wf] ⟨e
′
1,M

′⟩, and therefore ⊢α

[wf] ⟨e
′,M′⟩.

Corollary 11 (Preservation).

⊢α

[wf] ⟨e,M⟩∧∅;pc;H⊢ e ∶ τ,X ∧⟨e,M⟩ →∗
α ⟨e′,M′⟩

⇒⊢α

[wf] ⟨e
′,M′⟩∧∅;pc;H⊢ e′ ∶ τ,X

Proof. This follows from Lemmas 9 and 10 by induction on the number of→α transitions taken.

Corollary 12 (Preservation (nonadversarial execution)).

⊢[wf] ⟨e,M⟩∧∅;pc;H⊢ e ∶ τ,X ∧⟨e,M⟩ →∗ ⟨e′,M′⟩
⇒⊢[wf] ⟨e′,M′⟩∧∅;pc;H⊢ e′ ∶ τ,X

Proof. This follows by Corollary 11 and the definition of ⊢[wf] ⟨e,M⟩.

Lemma 13 (Progress). Let ⟨e,M⟩ be a configuration wherein e has type τ and effect X , and the locations appearing
in e are mapped by M. Then either e is a value, or ⟨e,M⟩ can take an

eÐ→ transition:

∅;pc;H⊢ e ∶ τ,X ∧ locs(e) ⊆ dom(M)
⇒ e is a value∨∃e′,M′. ⟨e,M⟩ eÐ→ ⟨e′,M′⟩

(Doubly bracketed values are considered expressions and not values.)

Proof. By induction on the derivation of ∅;pc;H ⊢ e ∶ τ,X . We proceed by cases according to the syntax of e. Note
that since e is typed in an empty type context (Γ = ∅), we must have FV(e) = ∅.

Case e = v:

Trivial since e is a value.

Case e = v1 v2:

From the typing of e, we know that v1 is a value with an arrow type and ⊺ effect, so it is either an abstraction
λ(x ∶τ1)[pc1;H1].e1 or a bracketed value [v′1]. In the former case, by APPLY, we have

⟨e,M⟩ = ⟨(λ(x ∶τ1)[pc1;H1].e1) v2,M⟩ eÐ→ ⟨e1{v2/x},M⟩ .

In the latter case, by BRACKET-APPLY, we have ⟨e,M⟩ = ⟨[v′1] v2,M⟩ eÐ→ ⟨[v′1 v2],M⟩.

Case e = if v1 then e2 else e3:

From the typing of e, we know that v1 is a value with bool type and ⊺ effect, so either v1 = true, v1 = false, or v1

is a bracketed value [v′1]. If v1 = true, then by IF-TRUE, we have ⟨e,M⟩ = ⟨if true then e2 else e3,M⟩ eÐ→ ⟨e2,M⟩.
If v1 = false, then by IF-FALSE, we have ⟨e,M⟩ = ⟨if false then e2 else e3,M⟩ eÐ→ ⟨e3,M⟩. Otherwise, v1 = [v′1]
and by BRACKET-IF, we have ⟨e,M⟩ = ⟨if [v′1] then e2 else e3,M⟩ eÐ→ ⟨[if v′1 then e2 else e3],M⟩.

Case e = {ÐÐÐ⇀xi = vi}S:

Trivial by CREATE.
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Case e = v.xc:

From the typing of e, we know v is a value with record type and ⊺ effect, so it is either a bracketed hard reference
(v = [mS]), a bracketed soft reference (v = [soft mS]), a hard reference (v =mS), or a soft reference (v = soft mS).

In the first case (v = [mS]), by BRACKET-SELECT, we have ⟨e,M⟩ = ⟨[mS].xc,M⟩ eÐ→⟨[mS.xc],M⟩. In the second

case (v = [soft mS]), by BRACKET-SOFT-SELECT, we have ⟨e,M⟩ = ⟨[soft mS].xc,M⟩ eÐ→ ⟨[(soft mS).xc],M⟩.
In the third (v = mS) and fourth (v = soft mS) cases, assume without loss of generality S = {ÐÐ⇀xi ∶ τi}(a,p). Since
locs(e) ⊆ dom(M), we must have mS ∈ dom(M). There are two sub-cases to consider. In each sub-case, we will
show ⟨mS.xc,M⟩ eÐ→ ⟨v′′,M⟩, for some v′′, thereby proving the case of a hard reference (v = mS). The case of a

soft reference (v = soft mS) follows by SOFT-SELECT: ⟨(soft mS).xc,M⟩ eÐ→ ⟨v′′ ▸α (a⊓ p),M⟩.

1. Case M(mS) ≠ �:
Without loss of generality, assume M(mS) = {ÐÐÐ⇀xi = vi}. Then, by SELECT,

⟨mS.xc,M⟩ eÐ→ ⟨vc ▸α p,M⟩ .

2. Case M(mS) = �:

By DANGLE-SELECT, ⟨mS.xc,M⟩ eÐ→ ⟨�p ▸α p,M⟩.

Case e = v.xc ∶= v′:

From the typing of e, we know that v is a value with record type and ⊺ effect, so it must be either a bracketed
hard reference (v = [mS]), a bracketed soft reference (v = [soft mS]), a hard reference (v =mS), or a soft reference
(v = soft mS).

In the first case (v = [mS]), by BRACKET-ASSIGN, we have ⟨e,M⟩ = ⟨[mS].xc ∶= v′,M⟩ eÐ→ ⟨[mS.xc ∶= v′],M⟩.

In the second case (v = [soft mS]), by BRACKET-SOFT-ASSIGN, we have ⟨e,M⟩ = ⟨[soft mS].xc ∶= v′,M⟩ eÐ→
⟨[(soft mS).xc ∶= v′],M⟩.
For the remaining cases, suppose v = mS or v = soft mS. Then, since locs(e) ⊆ dom(M), we must have mS ∈
dom(M). Without loss of generality, assume S = {ÐÐ⇀xi ∶ τi}(a,p). From the typing of e, we also know that v′ is
a value with ⊺ effect, so v′ ≠ �p′ and v′ ≠ [�p′] for all p′. There are two sub-cases to consider. In each sub-
case, we will show ⟨mS.xc ∶= v′,M⟩ eÐ→ ⟨v′′′,M′⟩, for some v′′′ and some M′, thereby proving the case of a hard

reference (v=mS). The case of a soft reference (v= soft mS) follows by SOFT-ASSIGN: ⟨(soft mS).xc ∶= v′,M⟩ eÐ→
⟨v′′′ ▸α (a⊓ p),M′⟩.

1. Case M(mS) ≠ �:
Without loss of generality, assume M(mS) = {ÐÐÐ⇀xi = vi}. Then, by ASSIGN,

⟨mS.xc ∶= v′,M⟩ eÐ→ ⟨∗▸α p,M[mS.xc↦ v′ ▸α τc]⟩ .

2. Case M(mS) = �:

By DANGLE-ASSIGN, ⟨mS.xc ∶= v′,M⟩ eÐ→ ⟨�p ▸α p,M⟩.

Case e = exists v as x ∶ e1 else e2:

From the typing of e, we know that v is a value with soft reference type, so it is either a bracketed value (v = [v′])
or a soft reference (v = soft mS).

In the first case (v = [v′]), by BRACKET-EXISTS, we have

⟨e,M⟩ = ⟨exists [v′] as x ∶ e1 else e2,M⟩ eÐ→ ⟨[exists v′ as x ∶ e1 else e2],M⟩

32



The second case (v = soft mS) splits into two subcases. Assume S = {ÐÐ⇀xi ∶ τi}(a,p) without loss of generality. If
M(mS) ≠ �, then by EXISTS-TRUE, we have

⟨e,M⟩ = ⟨exists soft mS as x ∶ e1 else e2,M⟩ eÐ→ ⟨(e1{mS/x})▸α (a⊓ p),M⟩

Otherwise, M(mS) = �, and by EXISTS-FALSE, we have

⟨e,M⟩ = ⟨exists soft mS as x ∶ e1 else e2,M⟩ eÐ→ ⟨e2 ▸α (a⊓ p),M⟩

Case e = soft e1:

From the typing of e, we know that ∅;pc;H ⊢ e1 ∶ Rw,X , where τ = (soft R)w. Since locs(e) ⊆ dom(M), we
must also have locs(e1) ⊆ dom(M), so by the induction hypothesis, either e1 is a value or ⟨e1,M⟩ eÐ→ ⟨e′1,M′⟩,
for some e′1 and M′. There are four cases to consider:

1. e1 is a value �p,

2. e1 is a bracketed value [v],
3. e1 is some other value, and

4. ⟨e1,M⟩ eÐ→ ⟨e′1,M′⟩.

In case 1, by FAIL-PROP, we have ⟨e,M⟩ = ⟨soft �p,M⟩ eÐ→ ⟨�p,M⟩.

In case 2, by BRACKET-SOFT, we have ⟨e,M⟩ = ⟨soft [v],M⟩ eÐ→ ⟨[soft v],M⟩.
In case 3, e1 must be a hard reference mS, so e = soft mS is also a value.

In case 4, by EVAL-CONTEXT, we have ⟨e,M⟩ = ⟨soft e1,M⟩ eÐ→ ⟨soft e′1,M
′⟩.

Case e = e1∥e2:

From the typing of e, we have ∅;pc;⊺ ⊢ ei ∶ τi,⊺ for i ∈ {1,2}. Since locs(e) ⊆ dom(M), we must also have
locs(ei) ⊆ dom(M), so by the induction hypothesis, either e1 and e2 are both values, or (without loss of general-
ity) ⟨e1,M⟩ eÐ→ ⟨e′1,M′⟩, for some e′1 and M′.

If e1 and e2 are both values, then by PARALLEL-RESULT, we have ⟨e,M⟩ = ⟨e1∥e2,M⟩ eÐ→ ⟨∗,M⟩.
Otherwise, by EVAL-CONTEXT, we have ⟨e,M⟩ = ⟨e1∥e2,M⟩ eÐ→ ⟨e′1∥e2,M′⟩.

Case e = try e1 catch p∶ e2:

From the typing of e, we have ∅;pc;H, p ⊢ e1 ∶ τ1,X1, where τ = τ1⊓w with w =⊓p′∈X1(p⊔ p′). Since locs(e) ⊆
dom(M), we must also have locs(e1) ⊆dom(M), so by the induction hypothesis, either e1 is a value or ⟨e1,M⟩ eÐ→
⟨e′1,M′⟩, for some e′1 and M′. There are five cases to consider:

1. e1 is a value �p′ and ⊢ p ≼ p′,

2. e1 is a value �p′ and p /≼ p′,

3. e1 is a bracketed value [v],
4. e1 is some other value v, and

5. ⟨e1,M⟩ eÐ→ ⟨e′1,M′⟩.

In case 1, by TRY-CATCH, we have ⟨e,M⟩ = ⟨try �p′ catch p∶ e2,M⟩ eÐ→ ⟨e2,M⟩.

In case 2, by TRY-ESC, we have ⟨e,M⟩ = ⟨try �p′ catch p∶ e2,M⟩ eÐ→ ⟨�p′ ,M⟩.

In case 3, by BRACKET-TRY, we have ⟨e,M⟩ = ⟨try [v] catch p∶ e2,M⟩ eÐ→ ⟨[try v catch p∶ e2],M⟩.
In case 4, by TRY-VAL, we have ⟨e,M⟩ = ⟨try v catch p∶ e2,M⟩ eÐ→ ⟨v,M⟩.
Finally, in case 5, by EVAL-CONTEXT, we have

⟨e,M⟩ = ⟨try e1 catch p∶ e2,M⟩ eÐ→ ⟨try e′1 catch p∶ e2,M′⟩
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Case e = let x = e1 in e2:

From the typing of e, we have ∅;pc;H ⊢ e1 ∶ τ1,X1. Since locs(e) ⊆ dom(M), we must also have locs(e1) ⊆
dom(M), so by the induction hypothesis, either e1 is a value or ⟨e1,M⟩ eÐ→ ⟨e′1,M′⟩, for some e′1 and M′. There
are five cases to consider:

1. e1 is a bottom value �p,

2. e1 is a bracketed bottom value [�p],
3. e1 is some other bracketed value [v],
4. e1 is some other value v, and

5. ⟨e1,M⟩ eÐ→ ⟨e′1,M′⟩.

In case 1, by FAIL-PROP, we have ⟨e,M⟩ = ⟨let x = �p in e2,M⟩ eÐ→ ⟨�p,M⟩.

In case 2, by BRACKET-FAIL, we have ⟨e,M⟩ = ⟨let x = [�p] in e2,M⟩ eÐ→ ⟨[�p],M⟩.

In case 3, by BRACKET-LET, we have ⟨e,M⟩ = ⟨let x = [v] in e2,M⟩ eÐ→ ⟨[e2{[v]/x}],M⟩.
In case 4, by LET, we have ⟨e,M⟩ = ⟨let x = v in e2,M⟩ eÐ→ ⟨e2{v/x},M⟩.
In case 5, by EVAL-CONTEXT, we have ⟨e,M⟩ = ⟨let x = e1 in e2,M⟩ eÐ→ ⟨let x = e′1 in e2,M′⟩.

Case e = [e′]:
From the typing of e, we have ∅;pc′;H ⊢ e′ ∶ τ

′,X . Since locs(e) ⊆ dom(M), we must also have locs(e′) ⊆
dom(M), so by the induction hypothesis, either e′ is a value or ⟨e′,M⟩ eÐ→ ⟨e′′,M′⟩.
If e′ is a bracketed value [v], then by DOUBLE-BRACKET, we have ⟨e,M⟩ = ⟨[[v]],M⟩ eÐ→ ⟨[v],M⟩.
If e′ is some other value v, then e = [v] is a value.

Otherwise, by BRACKET-CONTEXT, we have ⟨e,M⟩ = ⟨[e′],M⟩ eÐ→ ⟨[e′′],M′⟩.

Corollary 14 (Soundness of [λpersist]).

⊢α

[wf] ⟨e,M⟩∧∅;pc;H⊢ e ∶ τ,X
⇒ ⟨e,M⟩ ⇑ ∨∃v ∈Val,M′. ⟨e,M⟩ eÐ→∗ ⟨v,M′⟩

Proof. This follows from Corollary 11 and Lemma 13 by induction on the number of
eÐ→ transitions taken.

8.4 Security relation
The key to proving both referential integrity and immunity to storage attacks is to show that the adversary cannot
meaningfully influence the high-integrity parts of the program and memory. This property is similar to noninterfer-
ence [10], and similarly can be expressed using a security relation on configurations. Two configurations are related if
they agree on all high-integrity parts of the program and of the memory.

The property states that for any execution influenced by the adversary, there is a corresponding, related execution
in which the adversary is not present. Hence, the adversary’s influence is not significant. More precisely, each config-
uration ⟨e1,M1⟩ reached via the language augmented by adversarial transitions must be related to some configuration
⟨e2,M2⟩ reachable by purely nonadversarial execution. This is a possibilistic security property, which is problematic
for confidentiality properties [21], but is acceptable for integrity.

Because the two executions being compared operate on different heaps, with the adversary behaving differently
in the two executions, the addresses chosen during record allocation may differ. However, the structure of the high-
integrity part of the heap should still correspond. A high-integrity homomorphism φ is used to relate corresponding
locations in the two heaps that are high-integrity or high-persistence. High-integrity homomorphisms are injective,
preserve location types, and are isomorphisms on both high-integrity and high-persistence locations.
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b ∈ {true, false}

b ≈φ

α b

φ(mS
1) = mS

2

mS
1 ≈

φ
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2
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�p ≈
φ
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φ

α v′i
(∀i)

v1 v2 ≈
φ

α v′1 v′2
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φ
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(∀i)

if e1 then e2 else e3 ≈
φ

α if e′1 then e′2 else e′3
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φ
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φ
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e ≈φ

α e′
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φ
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φ

α e′1∥e′2
ei ≈

φ

α e′i
(∀i)

exists e1 as x ∶ e2 else e3 ≈
φ

α exists e′1 as x ∶ e′2 else e′3

ei ≈
φ

α e′i
(∀i)

try e1 catch p∶ e2 ≈
φ

α try e′1 catch p∶ e′2
ei ≈

φ

α e′i
(∀i)

let x = e1 in e2 ≈
φ

α let x = e′1 in e′2

Figure 12: Security relation on expressions in [λpersist]

Definition 11 (High-integrity homomorphism). An injective partial function φ ∶ dom(M1) ⇀ dom(M2) is a high-
integrity homomorphism from M1 to M2 if it satisfies the following:

• Injective: mS1
1 ≠mS2

2 ∧{mS1
1 ,mS2

2 } ⊆ dom(φ)⇒ φ(mS1
1 ) ≠ φ(mS2

2 );

• Type-preserving: mS2
2 = φ(mS1

1 )⇒ S1 = S2; and

• Isomorphous when the domain and range are restricted to the high-integrity and high-persistence locations in
M1 and M2:

φ∣D ∶D↣→ R,

where D = {mS ∈ dom(M1) ∣ ⊢ α ≼ integ(S)∨ ⊢ α ≼ persist(S)} and R = {mS ∈ dom(M2) ∣ ⊢ α ≼ integ(S)∨ ⊢
α ≼ persist(S)}. The notation integ(S) denotes the integrity of a record with type S: the least upper bound of its
fields’ integrity.

integ({ÐÐ⇀xi ∶ τi}s) =⊔
i
integ(τi)

We are now ready to define our security relation on expressions. An expression e1 is considered to be related to e2

via a high-integrity homomorphism φ, written e1 ≈φ

α e2, if e1 is equal to e2 (modulo bracketed expressions) when the
memory locations in e1 are transformed via φ. This is defined formally in Figure 12.

To ensure that high-integrity dereferences yield related results, we also define a security relation on memories:
M1 and M2 are related via φ, written M1 ≈φ

α M2, if two conditions hold for each location mS ∈ dom(φ). If mS is not
deleted, then φ(mS) maps to a related record. Otherwise, if mS is deleted, high-authority, and high-persistence, then
so is φ(mS).

Definition 12 (Security relation on memories). Two memories, M1 and M2, are φ-related, written M1 ≈φ

α M2, if for any
location mS ∈ dom(φ),

1. if mS is not deleted, then φ(mS) maps to a φ-related record; and

2. if mS is a deleted high-authority, high-persistence location, then so is φ(mS).

M1 ≈φ

α M2
def.
⇐⇒ ∀mS ∈ dom(φ).

(M1(mS) ≠ �⇒M2(φ(mS)) ≠ �∧M1(mS) ≈φ

α M2(φ(mS)))
∧(⊢ α ≼ auth+(S)⊓persist(S)∧M1(mS) = �⇒M2(φ(mS)) = �)
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These two security relations induce a security relation on configurations:

⟨e1,M1⟩ ≈φ

α ⟨e2,M2⟩
def.
⇐⇒ e1 ≈φ

α e2∧M1 ≈φ

α M2.

A [λpersist] program has limited adversary influence if related initial configurations produce related final configurations.
We now see that the language [λpersist] enforces security, because all well-formed programs do have limited adversary
influence.

8.5 Referential integrity
Theorem 1 formalizes the referential integrity result, showing that the adversary has limited influence on program
execution: execution in the presence of an adversary is φ-related to a nonadversarial execution.

Theorem 1 (Referential integrity). Assume ⟨e1,M1⟩ is a well-formed configuration and ⟨e2,M2⟩ is a well-formed,
nonadversarial, φ-related configuration, such that e1 and e2 have type τ and M2 is well-formed:

⊢α

[wf] ⟨e1,M1⟩ ∧ ⊢[wf] ⟨e2,M2⟩ ∧ ⟨e1,M1⟩ ≈φ

α ⟨e2,M2⟩
∧ ∅;pc;H⊢ e1 ∶ τ,X ∧ ∅;pc;H⊢ e2 ∶ τ,X ∧ ⊢α

[wf] M2

Suppose ⟨e1,M1⟩ takes some number of steps in the presence of an adversary to another configuration ⟨e′1,M′
1⟩. Then

either ⟨e2,M2⟩ diverges, or it can take some number of steps in the absence of an adversary to another configuration
⟨e′2,M′

2⟩ and there exists a high-integrity homomorphism φ
′ from M′

1 to M′
2 that extends φ, such that ⟨e′1,M′

1⟩ is related
to ⟨e′2,M′

2⟩ via φ
′:

⟨e1,M1⟩ →∗
α ⟨e′1,M′

1⟩∧¬⟨e2,M2⟩ ⇑

⇒ ∃e′2,M
′
2,φ

′. ⟨e2,M2⟩ →∗ ⟨e′2,M′
2⟩∧⟨e′1,M′

1⟩ ≈
φ
′

α ⟨e′2,M′
2⟩∧φ = φ

′∣
dom(φ)

To prove this, we first need to prove a few preliminary results about garbage collection, given by Lemmas 15–25.

Lemma 15. Let e be well-typed in a low-integrity context. Assume that if e is a memory location, then it is low-
authority. If mS is a GC root in e, then mS must be low-authority:

Γ;pc;H⊢ e ∶ τ,X ∧α /≼ pc
∧(e ∈ dom(M)⇒ α /≼ auth+(τ))∧ root(mS,e)

⇒ α /≼ auth+(S)

Proof. By induction on the derivation of root(mS,e).

Case R1 (e =mS):

Without loss of generality, assume S = {ÐÐ⇀xi ∶ τi}(a,p), where α /≼ a. We have τ = ({ÐÐ⇀xi ∶ τi}(a,a,p))⊺, so auth+(τ) =
auth+(S) and the result follows trivially.

Case R2 (e = soft e′, where ∀mS′
1 . e′ ≠mS′

1 ):

From the derivation of root(mS,e), we have root(mS,e′). From the typing of e, we have Γ;pc;H ⊢ e′ ∶ Rw,X .
Therefore, the induction hypothesis applies, and the result follows.

Case R3 (e = {ÐÐÐ⇀xi = vi}S′):

From the derivation of root(mS,e), we have root(mS,vc) for some c.

From the typing of e, we know Γ;pc;H ⊢ vc ∶ τ
′,⊺, where ⊢ auth+(τ

′) ≼ pc. From this, we also know α /≼
auth+(τ

′).

Therefore, the induction hypothesis applies, and the result follows.
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Case R4 (e = v.x):

From the derivation of root(mS,e), we have root(mS,v).

From the typing of e, we have Γ;pc;H ⊢ v ∶ τ′,⊺, where either τ
′ = ({ÐÐ⇀xi ∶ τi}(a+,a−,p))w with ⊢ a+ ≼ pc, or τ

′ =
(soft R)w for some R. We therefore know α /≼ auth+(τ

′).

Therefore, the induction hypothesis applies, and the result follows.

Case R5 (e = v1.x ∶= v2):

From the derivation of root(mS,e), we have root(mS,vi), for some i ∈ {1,2}.

From the typing of e, we know Γ;pc;H ⊢ v1 ∶ τ
′,⊺ (where either τ

′ = ({ÐÐ⇀xi ∶ τi}(a+,a−,p))w with ⊢ a+ ≼ pc, or
τ
′ = (soft R)w for some R) and Γ;pc;H ⊢ v2 ∶ τ

′′,⊺, where ⊢ auth+(τ
′′) ≼ pc. Therefore, α /≼ auth+(τ

′) and
α /≼ auth+(τ

′′). So, the induction hypothesis applies for i ∈ {1,2}, and the result follows.

Case R6 (e = λ(x ∶τ′)[pc′;H′].e′):

From the typing of e, we know ⊢wf τ ∶ type, ⊢ pc′ ≼ pc, and Γ,x ∶ τ′;pc′;H′ ⊢ e′ ∶ τ
′′,H′, where τ = τ

′ pc′,H′
ÐÐÐ→

τ
′′. Since α /≼ pc, we have α /≼ pc′. From ⊢wf τ ∶ type, we know ⊢ auth+(τ

′′) ≼ pc′, so we therefore know
α /≼ auth+(τ

′′). From the derivation of root(mS,e), we know root(mS,e′). Therefore, the induction hypothesis
applies, and the result follows.

Case R7 (e = v1 v2):

From the derivation of root(mS,e), we have root(mS,vi) for some i ∈ {1,2}.

From the typing of e, we know Γ;pc;H⊢ v1 ∶ (τ
′ pc′,H′
ÐÐÐ→ τ)w,⊺, Γ;pc;H⊢ v2 ∶ τ′,⊺, and ⊢wf (τ

′ pc′,H′
ÐÐÐ→ τ)w ∶ type,

with ⊢ pc′ ≼ pc. Therefore, α /≼ pc′.

From the derivation of ⊢wf (τ
′ pc′,H′
ÐÐÐ→ τ)w ∶ type, we have ⊢ auth+(τ

′) ≼ pc and ⊢ auth+(τ) ≼ pc. We therefore
know α /≼ auth+(τ

′).

So, the induction hypothesis applies for i ∈ {1,2}, and the result follows.

Case R8 (e = let x = e1 in e2):

From the derivation of root(mS,e), we have root(mS,ei), for some i ∈ {1,2}.

From the typing of e, we know Γ;pc;H⊢ e1 ∶ τ′,X1 and Γ,x ∶τ′;pc′;H⊢ e2 ∶ τ′′,X2, where ⊢ auth+(τ
′) ≼ pc, pc′ =

pc⊓w, and ⊢ auth+(τ
′′) ≼ pc′, for some w. Therefore, it follows that α /≼ pc′, α /≼ auth+(τ

′), and α /≼ auth+(τ
′′).

So, the induction hypothesis applies for i ∈ {1,2}, and the result follows.

Case R9 (e = e1∥e2):

From the derivation of root(mS,e), we have root(mS,ei) for some i ∈ {1,2}. Without loss of generality, assume
i = 1.

From the typing of e, we know Γ;pc;⊺⊢ e1 ∶ τ1,⊺ and ⊢ auth+(τ1) ≼ pc. From this, we also know α /≼ auth+(τ1).

Therefore, the induction hypothesis applies, and the result follows.

Case R10 (e = if v then e1 else e2):

From the typing of e, we know Γ;pc;H ⊢ v ∶ boolw,⊺ and Γ;pc⊓w;H ⊢ ei ∶ τ
′,Xi (for i ∈ {1,2}), where ⊢

auth+(τ
′) ≼ pc. From this, we therefore know α /≼ auth+(τ

′).

From the derivation of root(mS,e), we have either root(mS,v) or root(mS,e j), for some j ∈ {1,2}. In all cases,
the induction hypothesis applies, and the result follows.

Case R11 (e = exists v as x ∶ e1 else e2):

From the typing of e, we know Γ;pc;H ⊢ v ∶ (soft {ÐÐ⇀xi ∶ τi}r)w,⊺ and Γi;pc⊓w′;H ⊢ ei ∶ τ′,Xi (for i ∈ {1,2}),
where ⊢ auth+(τ

′) ≼ pc⊓w′. From this, we therefore know α /≼ auth+(τ
′).

From the derivation of root(mS,e), we have either root(mS,v) or root(mS,e j), for some j ∈ {1,2}. In all cases,
the induction hypothesis applies, and the result follows.
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Case R12 (e = try e1 catch p∶ e2):

From the derivation of root(mS,e), we have root(mS,ei), for some i ∈ {1,2}.

From the typing of e, we know Γ;pc;H, p ⊢ e1 ∶ τ
′,X1 and Γ;pc′;H ⊢ e2 ∶ τ

′,X2, where ⊢ pc′ ≼ pc and ⊢
auth+(τ

′) ≼ pc. From this, we also know α /≼ pc′ and α /≼ auth+(τ
′).

So, the induction hypothesis applies for i ∈ {1,2}, and the result follows.

Case R13 (e = [e′]):

From the derivation of root(mS,e), we have root(mS,e′).

From the typing of e, we know Γ;pc′;H⊢ e′ ∶ τ′,X , where ⊢ pc′ ≼ pc and ⊢ auth+(τ
′) ≼ pc. From this, it follows

that α /≼ pc′ and α /≼ auth+(τ
′).

Therefore, the induction hypothesis applies, and the result follows.

Lemma 16. Suppose mS is a high-authority location that is a GC root in the well-typed value v. Then v must have
high-authority type.

⊢ α ≼ auth+(S)∧ root(mS,v)∧∅;⊺;⊺ ⊢ v ∶ τ,⊺
⇒⊢ α ≼ auth+(τ)

Proof. Since root(mS,v), the value v must either be equal to mS, be a lambda abstraction λ(x ∶ τ)[pc;H].e, or be a
bracketed value [v′].

Case v =mS:

We therefore have ∅;⊺;⊺ ⊢mS ∶ τ,⊺. So ⊢ auth+(S) ≼ auth+(τ). Therefore, ⊢ α ≼ auth+(τ), as desired.

Case v = λ(x ∶τ)[pc;H].e:

From the derivation of root(mS,v), we have root(mS,e). So, we must have τ = τ1
pc,HÐÐ→ τ2, for some τ1 and

some τ2. Therefore, auth+(τ) = pc.

Suppose α /≼ pc. From the typing of v, we know x ∶ τ1;pc;H ⊢ e ∶ τ2,H and ⊢wf τ1
pc,HÐÐ→ τ2 ∶ type. Therefore,

we also know ⊢ auth+(τ2) ≼ pc, and hence, α /≼ auth+(τ2). Since root(mS,e), by Lemma 15, we must have
α /≼ auth+(S), a contradiction. So, we must have ⊢ α ≼ pc = auth+(τ), as desired.

Case v = [v′]:
From the derivation of root(mS,v), we have root(mS,v′). From the typing derivation of v, we know ∅;`;⊺ ⊢ v′ ∶
τ
′,⊺ and ⊢ auth+(τ

′) ≼ `, where α /≼ `. Therefore, α /≼ auth+(τ
′). Since root(mS,v′), by Lemma 15, we must

have α /≼ auth+(S), a contradiction. This case therefore holds vacuously.

Lemma 17. Suppose mS is a high-authority location that is noncollectible in the configuration ⟨v,M⟩, where M is
well-formed and the value v has type τ. Then τ must be high-authority.

⊢α

[wf] M∧ ⊢ α ≼ auth+(S)∧nc(mS,⟨v,M⟩)∧∅;⊺;⊺ ⊢ v ∶ τ,⊺
⇒⊢ α ≼ auth+(τ)

Proof. By induction on the derivation of nc(mS,⟨v,M⟩).

Case NC1:

We have root(mS,v). The result follows via Lemma 16.
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Case NC2:

We have root(mS1
1 ,v), M(mS1

1 ) = {ÐÐÐ⇀xi = vi}, and nc(mS,⟨vc,M⟩) for some c. Without loss of generality, assume
S1 = {ÐÐ⇀xi ∶ τi}(a,p). From ⊢α

[wf] M, we have ∅;⊺;⊺ ⊢ vc ∶ τc,⊺. Therefore, we can apply the induction hypothesis
to obtain ⊢ α ≼ auth+(τc). From ⊢α

[wf] M, we know ⊢wf S1 ∶ rectype, and therefore, ⊢ auth+(τc) ≼ a. Hence,
⊢ α ≼ a = auth+(S1). The result follows via Lemma 16.

Corollary 18. Suppose mS is a high-authority location that is noncollectible in the configuration ⟨mS1
1 ,M⟩, where M

is well-formed. Then mS1
1 is high-integrity, high-authority, and high-persistence.

⊢α

[wf] M∧ ⊢ α ≼ auth+(S)∧nc(mS,⟨mS1
1 ,M⟩)

⇒ ⊢ α ≼ integ(S1)⊓auth+(S1)⊓persist(S1)

Proof. Since ⊢α

[wf] M, we must have ⊢wf S1 ∶ rectype, and so, ⊢ auth+(S1) ≼ integ(S1) ⊓ persist(S1). It therefore

suffices to show that mS1
1 is high-authority. This follows from Lemma 17.

Lemma 19. Let mS be part of a group G that is collectible in ⟨e,M⟩. If mS is noncollectible in ⟨mS1
1 ,M⟩, then mS1

1
must also be in G.

gc(G,⟨e,M⟩)∧mS ∈G∧nc(mS,⟨mS1
1 ,M⟩)⇒mS1

1 ∈G

Proof. By induction on the derivation of nc(mS,⟨mS1
1 ,M⟩).

Case NC1:

We have root(mS,mS1
1 ). From this, it follows that mS1

1 =mS, and the result follows trivially.

Case NC2:

We have M(mS1
1 ) = {ÐÐÐ⇀xi = vi}, and nc(mS,⟨vc,M⟩) for some c. Suppose root(mS2

2 ,vc) for some mS2
2 ∈ G. From

this, we know root(mS2
2 ,M(mS1

1 )), and from the definition of gc(G,⟨e,M⟩), we have mS1
1 ∈G, as desired.

We proceed by cases according to the derivation of nc(mS,⟨vc,M⟩) to find such an mS2
2 .

Case NC1:
We have root(mS,vc), so choose mS2

2 =mS.

Case NC2:
We have root(mS3

3 ,vc), M(mS3
3 ) = {ÐÐÐ⇀xi = ui}, and nc(mS,⟨uc′ ,M⟩) for some mS3

3 and some c′. It therefore

follows that nc(mS,⟨mS3
3 ,M⟩). So, we can apply the induction hypothesis to obtain mS3

3 ∈G. Therefore, we

can choose mS2
2 =mS3

3 .

Lemma 20. All locations in a collectible group are collectible:

gc(G,⟨e,M⟩)∧mS ∈G⇒¬nc(mS,⟨e,M⟩).

Proof. By contradiction. Let mS ∈ G be such that nc(mS,⟨e,M⟩). We proceed by cases according to the derivation of
nc(mS,⟨e,M⟩).

Case NC1:

We have root(mS,e). But from the definition of gc(G,⟨e,M⟩), no such mS can exist; a contradiction.
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Case NC2:

We have root(mS1
1 ,e), M(mS1

1 )={ÐÐÐ⇀xi = vi}, and nc(mS,⟨vc,M⟩) for some c. From this, it follows that nc(mS,⟨mS1
1 ,M⟩).

Therefore, by Lemma 19, we have mS1
1 ∈ G. So, from the definition of gc(G,⟨e,M⟩), we have ¬root(mS1

1 ,e), a
contradiction.

Lemma 21. Let C ⊆ dom(M) be a set of locations that are collectible in a configuration ⟨e,M⟩:

∀mS ∈C. ¬nc(mS,⟨e,M⟩).

Then there is a collectible group that contains C. In particular, let G be the largest superset of C such that from every
location in G, some location in C is reachable through a chain of hard references:

∀mS0
0 ∈G. ∃mS1

1 ∈C. nc(mS1
1 ,⟨mS0

0 ,M⟩). (13)

Then G is a collectible group: gc(G,⟨e,M⟩).

Proof. Suppose G is not a collectible group. Then either G contains a GC root in e, or there is a location outside G
with a hard reference into G.

Suppose G contains a GC root mS in e: mS ∈ G∧ root(mS,e). By construction of G, let mS1
1 ∈C be a location

reachable through a chain of hard references from mS: nc(mS1
1 ,⟨mS,M⟩). If M(mS) = �, then from the derivation of

nc(mS1
1 ,⟨mS,M⟩), we must have mS =mS1

1 , and so from root(mS,e), we know nc(mS1
1 ,⟨e,M⟩), a contradiction. Other-

wise, assume M(mS) ≠� and mS ≠mS1
1 . LetÐ⇀vi be such that M(mS) = {ÐÐÐ⇀xi = vi}. From the derivation of nc(mS1

1 ,⟨mS,M⟩),
we know there exists a c such that nc(mS1

1 ,⟨vc,M⟩). Therefore, by NC2, we have nc(mS1
1 ,⟨e,M⟩), a contradiction.

Otherwise, let mS /∈ G be such that M(mS) has a hard reference to some mS0
0 ∈ G: root(mS0

0 ,M(mS)). By construc-

tion of G, let mS1
1 ∈C be a location reachable through a chain of hard references from mS0

0 : nc(mS1
1 ,⟨mS0

0 ,M⟩).

We presently show that nc(mS1
1 ,⟨M(mS),M⟩). If M(mS0

0 ) = �, then from the derivation of nc(mS1
1 ,⟨mS0

0 ,M⟩), we

must have mS0
0 =mS1

1 , and so from root(mS0
0 ,M(mS)), we know nc(mS1

1 ,⟨M(mS),M⟩). Otherwise, assume M(mS0
0 ) ≠ �

and mS0
0 ≠mS1

1 . LetÐ⇀vi be such that M(mS0
0 ) = {ÐÐÐ⇀xi = vi}. From the derivation of nc(mS1

1 ,⟨mS0
0 ,M⟩), we know there exists

a c such that nc(mS1
1 ,⟨vc,M⟩). Therefore, by NC2, we have nc(mS1

1 ,⟨M(mS),M⟩).
So, we know nc(mS1

1 ,⟨M(mS),M⟩). It therefore follows that nc(mS1
1 ,⟨mS,M⟩). So, G∪{mS} is a set larger than G

satisfying property (13), a contradiction.

Lemma 22. Let e1 and e2 be well-typed related expressions, and suppose φ(mS) is a high-authority GC root of e2.
Then mS is a GC root of e1.

e1 ≈φ

α e2∧Γ;pc;H⊢ e1 ∶ τ,X ∧Γ;pc;H⊢ e2 ∶ τ,X
∧ ⊢ α ≼ auth+(S)∧ root(φ(mS),e2)
⇒ root(mS,e1)

Proof. By induction on the derivation of root(φ(mS),e2). Since e2 is well-typed, by Lemma 15, we know that case
R13 holds vacuously.

Lemma 23. Suppose M1 and M2 are well-formed memories. Let φ be a high-integrity homomorphism such that
M1 ≈φ

α M2. Let mS and mS1
1 be locations in M1 mapped by φ. Assume mS1

1 is high-authority and high-persistence. If
nc(φ(mS1

1 ),⟨φ(mS),M2⟩), then nc(mS1
1 ,⟨mS,M1⟩):

⊢α

[wf] M1∧ ⊢α

[wf] M2∧M1 ≈φ

α M2

∧ ⊢ α ≼ auth+(S1)⊓persist(S1)∧nc(φ(mS1
1 ),⟨φ(mS),M2⟩)

⇒ nc(mS1
1 ,⟨mS,M1⟩).
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Proof. By induction on the derivation of nc(φ(mS1
1 ),⟨φ(mS),M2⟩).

Case NC1:

We must have φ(mS) = φ(mS1
1 ). Since φ is injective, we know mS =mS1

1 , so the result follows by NC1.

Case NC2:

We know there exists some Ð⇀ui and some c such that M2(φ(mS)) = {ÐÐÐ⇀xi = ui} and nc(φ(mS1
1 ),⟨uc,M2⟩). As-

sume φ(mS) ≠ φ(mS1
1 ). (Otherwise, the argument for Case NC1 applies.) Since φ(mS1

1 ) is high-authority
and nc(φ(mS1

1 ),⟨φ(mS),M2⟩), by Corollary 18, we know that mS is high-integrity, high-authority and high-
persistence. Since M1 ≈φ

α M2 and M2(φ(mS)) ≠ �, then we must have M1(mS) ≠ �. So let Ð⇀vi be such that
M1(mS) = {ÐÐÐ⇀xi = vi}.

We show that nc(mS1
1 ,⟨vc,M1⟩). From this, the result follows via an application of NC2:

root(mS,mS) M1(mS) = {ÐÐÐ⇀xi = vi} nc(mS1
1 ,⟨vc,M1⟩)

nc(mS1
1 ,⟨mS,M1⟩).

Consider the two cases in the derivation of nc(φ(mS1
1 ),⟨uc,M2⟩):

Sub-case NC1:
We have root(φ(mS1

1 ),uc). From M1 ≈φ

α M2, we know vc ≈φ

α uc. From ⊢α

[wf] M1 and ⊢α

[wf] M2, we know

∅;⊺;⊺⊢ vc ∶ τc,⊺ and∅;⊺;⊺⊢uc ∶ τc,⊺, for some τc. Therefore, we can apply Lemma 22 to get root(mS1
1 ,vc),

and the result follows via NC1.

Sub-case NC2:
Assume ¬root(φ(mS1

1 ),uc). (Otherwise, the argument in sub-case NC1 applies.)

We know there exists some mS2
2 ∈ dom(M2), some Ð⇀ui

′ and some c′ such that root(mS2
2 ,uc), M2(mS2

2 ) =
{
ÐÐÐ⇀
xi = u′i}, and nc(φ(mS1

1 ),⟨u′c′ ,M2⟩). From this, it follows that nc(φ(mS1
1 ),⟨mS2

2 ,M2⟩). Since φ(mS1
1 ) is

high-authority and nc(φ(mS1
1 ),⟨mS2

2 ,M2⟩), by Corollary 18, we know that mS2
2 is high-integrity, high-

authority, and high-persistence.

Since φ is a high-integrity homomorphism, there exists an mS3
3 such that mS2

2 = φ(mS3
3 ). Therefore, we can

apply the induction hypothesis to get nc(mS1
1 ,⟨mS3

3 ,M1⟩).

We have root(φ(mS3
3 ),uc). From M1 ≈φ

α M2, we know vc ≈φ

α uc. From ⊢α

[wf] M1 and ⊢α

[wf] M2, we know

∅;⊺;⊺⊢ vc ∶ τc,⊺ and∅;⊺;⊺⊢uc ∶ τc,⊺, for some τc. Therefore, we can apply Lemma 22 to get root(mS3
3 ,vc).

Since mS2
2 = φ(mS3

3 ), from ¬root(φ(mS1
1 ),uc) and root(mS2

2 ,uc), we know mS3
3 ≠ mS1

1 . Therefore, from the

derivation of nc(mS1
1 ,⟨mS3

3 ,M1⟩), we know there exists someÐ⇀vi
′ and some c′′ such that M1(mS3

3 ) = {
ÐÐÐ⇀
xi = v′i}

and nc(mS1
1 ,⟨v′c′′ ,M1⟩).

The result follows via NC2:

root(mS3
3 ,vc) M1(mS3

3 ) = {
ÐÐÐ⇀
xi = v′i} nc(mS1

1 ,⟨v′c′′ ,M1⟩)
nc(mS1

1 ,⟨vc,M1⟩)

Lemma 24. Let G be a collectible group in ⟨e,M⟩ with mS1
1 ∈G. If nc(mS1

1 ,⟨mS,M⟩), then mS ∈G:

gc(G,⟨e,M⟩)∧mS1
1 ∈G∧nc(mS1

1 ,⟨mS,M⟩)⇒mS ∈G

Proof. By induction on the derivation of nc(mS1
1 ,⟨mS,M⟩).
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Case NC1:

We must have mS =mS1
1 , so the result follows trivially.

Case NC2:

We know there exists some Ð⇀vi and some c such that M(mS) = {ÐÐÐ⇀xi = vi} and nc(mS1
1 ,⟨vc,M⟩). Consider the two

cases in the derivation of nc(mS1
1 ,⟨vc,M⟩):

Sub-case NC1:
We have root(mS1

1 ,vc), so we therefore know root(mS1
1 ,M(mS)). The result then follows from the defini-

tion of gc(G,⟨e,M⟩).

Sub-case NC2:
We know there exists some location mS2

2 such that root(mS2
2 ,vc) and nc(mS1

1 ,⟨mS2
2 ,M⟩). So, by the in-

duction hypothesis, we know mS2
2 ∈ G. From root(mS2

2 ,vc), we know root(mS2
2 ,M(mS)). The result then

follows from the definition of gc(G,⟨e,M⟩).

Lemma 25. Let M1 and M2 be well-formed memories. Suppose ⟨e1,M1⟩ ≈φ

α ⟨e2,M2⟩. Let G be a collectible group
in ⟨e1,M1⟩, and let φ(G) denote {φ(mS) ∶ mS ∈ G∩ dom(φ)}. Let C represent the high-authority, high-persistence
members of G∩dom(φ):

C = {mS ∈G∩dom(φ) ∶ ⊢ α ≼ auth+(S)⊓persist(S)}.
Then there exists a set G′ such that φ(G′) is a subset of φ(G), is a collectible group in ⟨e2,M2⟩, and contains all
members of φ(C):

⊢α

[wf] M1∧ ⊢α

[wf] M2∧⟨e1,M1⟩ ≈φ

α ⟨e2,M2⟩∧gc(G,⟨e1,M1⟩)
⇒ ∃G′.gc(φ(G′),⟨e2,M2⟩)∧φ(C) ⊆ φ(G′) ⊆ φ(G)

Proof. First, we show that φ(C) is a set of collectible locations. Suppose it isn’t. Then let mS ∈G∩dom(φ) be such that
φ(mS) ∈ φ(C) is noncollectible: nc(φ(mS),⟨e2,M2⟩). Since φ(mS) is high-authority and high-persistence, by induction
on the derivation of nc(φ(mS),⟨e2,M2⟩), we can show that mS must be noncollectible: nc(mS,⟨e1,M1⟩). Therefore,
by Lemma 20, G cannot be a collectible group, a contradiction.

Let G′ ⊆ dom(φ) be such that φ(G′) is the largest superset of φ(C) such that from every location in φ(G′), some
location in φ(C) is reachable through a chain of hard references: ∀mS0

0 ∈ φ(G′). ∃mS1
1 ∈ φ(C). nc(mS1

1 ,⟨mS0
0 ,M2⟩). By

Lemma 21, we know φ(G′) is a collectible group.
We now show that φ(G′) is also a subset of φ(G) by showing G′ ⊆G. Suppose mS ∈G′. By construction of G′, let

mS1
1 ∈C be such that nc(φ(mS1

1 ),⟨φ(mS),M2⟩). From this, by Lemma 23, we know nc(mS1
1 ,⟨mS,M1⟩). By Lemma 24,

then, we must have mS ∈G. So G′ ⊆G.

Lemmas 26–29 prove a few results about the preservation of the security relation under various conditions

Lemma 26 (Relation substitution). If e1 ≈φ

α e2 and e′1 ≈
φ

α e′2, then e1{e′1/x} ≈
φ

α e2{e′2/x}.

Proof. By induction on the derivation of e1 ≈φ

α e2.

Lemma 27 (Security-relation preservation under auto-bracketing). Auto-bracketing preserves the security relation:

e1 ≈φ

α e2⇒ e1 ▸α τ ≈φ

α e2 ▸α τ.

Proof. By induction on the derivation of e1 ≈φ

α e2.

Lemma 28. Suppose e1 ≈φ

α e2. Let mS be such that mS /∈ locs(e1) and let φ
′ = φ[mS ↦mS

1]. Then e1 ≈φ
′

α e2.

Proof. By induction on the derivation of e1 ≈φ

α e2.
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Lemma 29. Evaluating in a low-integrity context preserves the security relation on memories.
Let ⟨e1,M1⟩ be a well-formed configuration, wherein e1 is well-typed in a low-integrity context. Let M2 be a

well-formed memory and suppose ⟨e1,M1⟩
eÐ→∗ ⟨e′1,M′

1⟩.

⊢α

[wf] ⟨e1,M1⟩∧α /≼ pc∧∅;pc;H⊢ e1 ∶ τ,X

∧ ⊢α

[wf] M2∧⟨e1,M1⟩
eÐ→∗ ⟨e′1,M′

1⟩ .

Then the following holds.

1. M1 ≈φ

α M2⇒M′
1 ≈

φ

α M2 and

2. ⊢[wf] ⟨e1,M1⟩∧M2 ≈φ

α M1⇒M2 ≈φ

α M′
1.

Proof. If we can show this is true for the case where a single
eÐ→ step is taken, then the rest follows by induction on the

number of
eÐ→ steps taken. (We know the induction hypothesis will apply because of Corollary 11 and Corollary 12.)

We show the single-step case by induction on the derivation of ⟨e1,M1⟩
eÐ→ ⟨e′1,M′

1⟩. The proof proceeds by cases
according to the evaluation rules.

In cases SELECT, DANGLE-SELECT, SOFT-SELECT, DANGLE-ASSIGN, APPLY, EXISTS-TRUE, EXISTS-FALSE,
TRY-VAL, TRY-CATCH, TRY-ESC, PARALLEL-RESULT, IF-TRUE, IF-FALSE, LET, FAIL-PROP, BRACKET-SELECT,
BRACKET-SOFT-SELECT, BRACKET-ASSIGN, BRACKET-SOFT-ASSIGN, BRACKET-SOFT, BRACKET-EXISTS, BRACKET-
APPLY, BRACKET-TRY, BRACKET-IF, BRACKET-LET, DOUBLE-BRACKET, and BRACKET-FAIL, the result holds
trivially, since M′

1 =M1.

Case CREATE (⟨{ÐÐÐ⇀xi = vi}S,M1⟩
eÐ→ ⟨mS,M1[mS ↦{ÐÐÐÐÐÐ⇀xi = vi ▸α τi}]⟩, where m is fresh and S = {ÐÐ⇀xi ∶ τi}(a,p)):

1. Suppose M1 ≈φ

α M2. We show that M′
1 ≈

φ

α M2.
From the derivation of ∅;pc;H ⊢ e1 ∶ τ,X , we know ⊢ p ≼ pc and ⊢ integ(τi) ≼ pc for all i. Therefore,
we know mS is neither high-integrity nor high-persistence. The result then follows from the fact that
mS /∈ dom(φ) and the assumption M1 ≈φ

α M2.

2. Suppose ⊢[wf] ⟨e1,M1⟩ and M2 ≈φ

α M1. We show that M2 ≈φ

α M′
1.

This follows from M2 ≈φ

α M1.

Case ASSIGN (⟨mS.xc ∶= v,M1⟩
eÐ→ ⟨∗▸α p,M1[mS.xc↦ v▸α τc]⟩, where M1(mS) ≠ � and S = {ÐÐ⇀xi ∶ τi}(a,p)):

Let Ð⇀vi
′ and Ð⇀ui be such that M′

1(mS) = {
ÐÐÐ⇀
xi = v′i} and M2(φ(mS)) = {ÐÐÐ⇀xi = ui}. We therefore have v′c = v▸α τc.

From ∅;pc;H⊢mS.xc ∶= v ∶ τ,X , we know ⊢ τ
′⊓pc ≤ τc, for some τ

′. We therefore know ⊢ integ(τc) ≼ pc. So,
from α /≼ pc, we have α /≼ integ(τc). Therefore, v′c is a bracketed value: there exists a v′′c such that v′c = [v′′c ].
From ⊢α

[wf] M2 and α /≼ integ(τc), we also know uc is a bracketed value: uc = [u′c], for some u′c.

1. Suppose M1 ≈φ

α M2. We show that M′
1 ≈

φ

α M2.

Assume mS ∈ dom(φ) (otherwise, the result follows directly from M1 ≈φ

α M2). Since M1 ≈φ

α M2, it suffices
to show v′c ≈

φ

α uc. This is trivial, since v′c = [v′′c ] and uc = [u′c].
2. Suppose ⊢[wf] ⟨e1,M1⟩ and M2 ≈φ

α M1. We show that M2 ≈φ

α M′
1.

Assume mS ∈ im(φ) (otherwise, the result follows directly from M2 ≈φ

α M1). Since M2 ≈φ

α M1, it suffices to
show uc ≈φ

α v′c. This is trivial, since uc = [u′c] and v′c = [v′′c ].

Case SOFT-ASSIGN (⟨(soft mS).xc ∶= v,M1⟩
eÐ→⟨e′1 ▸α (a⊓ p),M′

1⟩, where ⟨mS.xc ∶= v,M1⟩
eÐ→⟨e′1,M′

1⟩ and S={ÐÐ⇀xi ∶ τi}(a,p)):

We proceed by cases according to the evaluation rules for ⟨mS.xc ∶= v,M1⟩
eÐ→ ⟨e′1,M′

1⟩.
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Sub-case ASSIGN (⟨mS.xc ∶= v,M1⟩
eÐ→ ⟨∗▸α p,M1[mS.xc↦ v▸α τc]⟩):

LetÐ⇀vi
′ andÐ⇀ui be such that M′

1(mS) = {
ÐÐÐ⇀
xi = v′i} and M2(φ(mS)) = {ÐÐÐ⇀xi = ui}. We therefore have v′c = v▸α τc.

From ∅;pc;H ⊢ (soft mS).xc ∶= v ∶ τ,X , we know ⊢ τ
′ ⊓ pc ≤ τc, for some τ

′. We therefore know ⊢
integ(τc) ≼ pc. So, from α /≼ pc, we have α /≼ integ(τc). Therefore, v′c is a bracketed value: there ex-
ists a v′′c such that v′c = [v′′c ].
From ⊢α

[wf] M2 and α /≼ integ(τc), we also know uc is a bracketed value: uc = [u′c], for some u′c.

1. Suppose M1 ≈φ

α M2. We show M′
1 ≈

φ

α M2.
Assume mS ∈ dom(φ) (otherwise, the result follows directly from M1 ≈φ

α M2). Since M1 ≈φ

α M2, it
suffices to show v′c ≈

φ

α uc. This is trivial, since v′c = [v′′c ] and uc = [u′c].
2. Suppose ⊢[wf] ⟨e1,M1⟩ and M2 ≈φ

α M1. We show M2 ≈φ

α M′
1.

Assume mS ∈ im(φ) (otherwise, the result follows directly from M2 ≈φ

α M1). Since M2 ≈φ

α M1, it suffices
to show uc ≈φ

α v′c. This is trivial, since uc = [u′c] and v′c = [v′′c ].

Sub-case DANGLE-ASSIGN (⟨mS.xc ∶= v,M1⟩
eÐ→ ⟨�p ▸α p,M1⟩):

The result holds trivially, since M′
1 =M1.

Case EVAL-CONTEXT (⟨E[e3],M1⟩
eÐ→ ⟨E[e′3],M′

1⟩, where ⟨e3,M1⟩
eÐ→ ⟨e′3,M′

1⟩):

A case analysis on the syntax of E[ ⋅] shows that from the derivation of ∅;pc;H ⊢ E[e3] ∶ τ,X , we know
∅;pc;H′ ⊢ e3 ∶ τ′,X ′, for someH′, τ

′, and X ′. Therefore, we can apply the induction hypothesis and obtain the
result.

Case BRACKET-CONTEXT (⟨[e3],M1⟩
eÐ→ ⟨[e′3],M′

1⟩, where ⟨e3,M1⟩
eÐ→ ⟨e′3,M′

1⟩):

From the derivation of ∅;pc;H⊢ [e3] ∶ τ,X , we know ∅;pc⊓`;H⊢ e3 ∶ τ′,X , where α /≼ ` and τ = τ
′⊓`. There-

fore, we can apply the induction hypothesis and obtain the result.

We can now prove Theorem 1, restated below for convenience.

Theorem 1 (Referential integrity). Assume ⟨e1,M1⟩ is a well-formed configuration and ⟨e2,M2⟩ is a well-formed,
nonadversarial, φ-related configuration, such that e1 and e2 have type τ and M2 is well-formed:

⊢α

[wf] ⟨e1,M1⟩ ∧ ⊢[wf] ⟨e2,M2⟩ ∧ ⟨e1,M1⟩ ≈φ

α ⟨e2,M2⟩
∧ ∅;pc;H⊢ e1 ∶ τ,X ∧ ∅;pc;H⊢ e2 ∶ τ,X ∧ ⊢α

[wf] M2

Suppose ⟨e1,M1⟩ takes some number of steps in the presence of an adversary to another configuration ⟨e′1,M′
1⟩. Then

either ⟨e2,M2⟩ diverges, or it can take some number of steps in the absence of an adversary to another configuration
⟨e′2,M′

2⟩ and there exists a high-integrity homomorphism φ
′ from M′

1 to M′
2 that extends φ, such that ⟨e′1,M′

1⟩ is related
to ⟨e′2,M′

2⟩ via φ
′:

⟨e1,M1⟩ →∗
α ⟨e′1,M′

1⟩∧¬⟨e2,M2⟩ ⇑

⇒ ∃e′2,M
′
2,φ

′. ⟨e2,M2⟩ →∗ ⟨e′2,M′
2⟩∧⟨e′1,M′

1⟩ ≈
φ
′

α ⟨e′2,M′
2⟩∧φ = φ

′∣
dom(φ)

Proof. If we can show this is true for the case where a single →α step is taken to reach ⟨e′1,M′
1⟩, then the rest follows

by induction on the number of→α steps taken. (We know the induction hypothesis will apply because of Corollary 11
and the fact that ⊢[wf] ⟨e2,M2⟩∧ ⊢α

[wf] M2⇒⊢α

[wf] ⟨e2,M2⟩.)
We show the single-step case by induction on the derivation of ⟨e1,M1⟩ →α ⟨e′1,M′

1⟩. The proof proceeds by cases
according to the evaluation rules. For each case, we need to show two things about e′2, M′

2, and φ
′:

i. Related expressions: e′1 ≈
φ
′

α e′2 and

ii. Related memories: M′
1 ≈

φ
′

α M′
2.
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It will be obvious by its construction that φ
′ is a high-integrity homomorphism that extends φ.

Case CREATE (⟨{ÐÐÐ⇀xi = vi}S,M1⟩ →α ⟨mS
1,M1[mS

1 ↦{ÐÐÐÐÐÐ⇀xi = vi ▸α τi}]⟩, where m1 is fresh and S = {ÐÐ⇀xi ∶ τi}s):

From e1 ≈φ

α e2, we know e2 = {ÐÐÐ⇀xi = ui}S with vi ≈φ

α ui for all i. By CREATE,

⟨e2,M2⟩ → ⟨mS
2,M2[mS

2 ↦{ÐÐÐÐÐÐ⇀xi = ui ▸α τi}]⟩ ,

where m2 is fresh. Choose φ
′ = φ[mS

1 ↦mS
2].

i. We need to show mS
1 ≈

φ
′

α mS
2.

This follows by construction of φ
′.

ii. We need to show M′
1 ≈

φ
′

α M′
2, where M′

1 =M1[mS
1 ↦{ÐÐÐÐÐÐ⇀xi = vi ▸α τi}] and M′

2 =M2[mS
2 ↦{ÐÐÐÐÐÐ⇀xi = ui ▸α τi}].

First, let mS′ ∈ dom(φ
′) be such that M′

1(mS′) ≠ �. We show that M′
2(φ

′(mS′)) ≠ � and M′
1(mS′) ≈φ

′
α

M′
2(φ

′(mS′)).

If mS′ = mS
1, then M′

1(mS′) = M′
1(mS

1) = {ÐÐÐÐÐÐ⇀xi = vi ▸α τi} and M′
2(φ

′(mS′)) = M′
2(mS

2) = {ÐÐÐÐÐÐ⇀xi = ui ▸α τi}, so the
result follows from the assumption e1 ≈φ

α e2 via Lemmas 27 and 28. Otherwise, mS′ ≠ mS
1, so M′

1(mS′) =
M1(mS′) and M′

2(φ
′(mS′)) =M2(φ(mS′)). The result therefore follows from the assumption M1 ≈φ

α M2.

Now, let mS′ ∈ dom(φ
′) be such that ⊢ α ≼ auth+(S′) ⊓ persist(S′) and M′

1(mS′) = �. We show that
M′

2(φ
′(mS′)) = �. Since M′

1(mS′) = �, we must have mS′ ≠ mS
1, so M′

1(mS′) = M1(mS′) and M′
2(φ

′(mS′)) =
M2(φ(mS′)). The result therefore follows from the assumption M1 ≈φ

α M2.

Case SELECT (⟨mS
1.xc,M1⟩ →α ⟨vc ▸α p,M1⟩, where S = {ÐÐ⇀xi ∶ τi}(a,p) and M1(mS

1) = {ÐÐÐ⇀xi = vi}):

From e1 ≈φ

α e2, we know e2 =mS
2.xc, where φ(mS

1) =mS
2. Therefore, from M1 ≈φ

α M2, we have M2(mS
2) = {ÐÐÐ⇀xi = ui}

for some Ð⇀ui , where vi ≈φ

α ui. So, by SELECT, ⟨e2,M2⟩ → ⟨uc ▸α p,M2⟩. Choose φ
′ = φ.

i. We need to show vc ▸α p ≈φ

α uc ▸α p.
This follows via Lemma 27.

ii. We need to show M1 ≈φ

α M2.
This is given.

Case DANGLE-SELECT (⟨mS
1.xc,M1⟩ →α ⟨�p ▸α p,M1⟩, where S = {ÐÐ⇀xi ∶ τi}(a,p) and M1(mS

1) = �):

From ⊢α

[wf] ⟨m
S
1.xc,M1⟩, nc(mS

1,⟨mS
1.xc,M1⟩), and M1(mS

1) = �, we know α /≼ p. Therefore, �p▸α p = [�p]. From

e1 ≈φ

α e2, we know e2 =mS
2.xc.

If M2(mS
2) = �, then by DANGLE-SELECT, ⟨e2,M2⟩ → ⟨[�p],M2⟩.

Otherwise, without loss of generality, assume M2(mS
2) = {ÐÐÐ⇀xi = ui}. Since α /≼ p, we have uc ▸α p = [u′c] for some

u′c. So, by SELECT, ⟨e2,M2⟩ → ⟨[u′c],M2⟩.
Choose φ

′ = φ.

i. We need to show that [�p] ≈φ

α [u] for u ∈ {u′c,�p}.
This is trivial.

ii. We need to show that M1 ≈φ

α M2.
This is given.

Case SOFT-SELECT (⟨(soft mS
1).xc,M1⟩ →α ⟨v′,M1⟩, where ⟨mS

1.xc,M1⟩
eÐ→ ⟨v,M1⟩, S = {ÐÐ⇀xi ∶ τi}(a,p)), and v′ = v▸α

(a⊓ p):

From e1 ≈φ

α e2, we know e2 = ((soft mS
2).xc), where φ(mS

1) =mS
2. If we can find u so that ⟨mS

2.xc,M2⟩
eÐ→ ⟨u,M2⟩,

then by SOFT-SELECT, we have ⟨e2,M2⟩ = ⟨(soft mS
2).xc,M2⟩ → ⟨u▸α (a⊓ p),M2⟩. Choose φ

′ = φ.

We proceed by cases according to the evaluation rules for ⟨mS
1.xc,M1⟩

eÐ→ ⟨v,M1⟩.
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Sub-case SELECT (v = vc ▸α p, where M1(mS
1) = {ÐÐÐ⇀xi = vi}):

From M1 ≈φ

α M2, we know M2(mS
2) = {ÐÐÐ⇀xi = ui} for some Ð⇀ui , where vi ≈φ

α ui. So, by SELECT, we have
⟨mS

2.xc,M2⟩
eÐ→ ⟨uc ▸α p,M2⟩. Therefore, u = uc ▸α p.

i. We need to show (vc ▸α p)▸α (a⊓ p) ≈φ

α (uc ▸α p)▸α (a⊓ p).
This follows via Lemma 27.

ii. We need to show M1 ≈φ

α M2.
This is given.

Sub-case DANGLE-SELECT (v = �p ▸α p, where M1(mS
1) = �):

First, suppose ⊢ α ≼ a⊓ p. Then v▸α (a⊓ p) = �p, u▸α (a⊓ p) = u, and ⊢ α ≼ p. Therefore, we have
mS

1 ∈ dom(φ), and so, φ(mS
1) = mS

2. From M1 ≈φ

α M2, then, we know M2(mS
2) = �. So, by SELECT, we have

⟨mS
2.xc,M2⟩

eÐ→ ⟨�p,M2⟩. Therefore, u = �p.

i. We need to show �p ≈φ

α �p.
This is trivial.

ii. We need to show M1 ≈φ

α M2.
This is given.

Now, suppose α /≼ a⊓ p. Then v▸α(a⊓ p) = [�p]. If M2(mS
2) =�, then by DANGLE-SELECT, ⟨mS

2.xc,M2⟩
eÐ→

⟨�p ▸α p,M2⟩. Otherwise, without loss of generality, assume M2(mS
2)={ÐÐÐ⇀xi = ui}. So, by SELECT, ⟨mS

2.xc,M2⟩
eÐ→

⟨uc ▸α p,M2⟩. Therefore, u▸α (a⊓ p) ∈ {(�p▸α p)▸α (a⊓ p),(uc▸α p)▸α (a⊓ p)} = {[�p],[u′c]}, for some
u′c.

i. We need to show [�p] ≈φ

α [u′] for u′ ∈ {u′c,�p}.
This is trivial.

ii. We need to show M1 ≈φ

α M2.
This is given.

Case ASSIGN (⟨mS
1.xc ∶= v,M1⟩ →α ⟨∗▸α p,M1[mS

1.xc↦ v▸α τc]⟩, where M1(mS
1) ≠ � and S = {ÐÐ⇀xi ∶ τi}(a,p)):

From e1 ≈φ

α e2, we know e2 = (mS
2.xc ∶= u) with φ(mS

1) = mS
2 and v ≈φ

α u. From M1 ≈φ

α M2, we have M2(mS
2) ≠ �.

So, by ASSIGN, ⟨mS
2.xc ∶= u,M2⟩ → ⟨∗▸α p,M2[mS

2.xc↦ u▸α τc]⟩. Choose φ
′ = φ.

i. We need to show ∗▸α p ≈φ

α ∗▸α p.
This follows via Lemma 27.

ii. We need to show M1[mS
1.xc↦ v▸α τc] ≈φ

α M2[mS
2.xc↦ u▸α τc].

First, let mS0
0 ∈ dom(φ) be such that M′

1(mS0
0 ) ≠ �. We show that M′

2(φ(mS0
0 )) ≠ � and M′

1(mS0
0 ) ≈φ

α

M′
2(φ(mS0

0 )).

If mS0
0 = mS

1, then φ(mS0
0 ) = mS

2. Let Ð⇀vi
′ and Ð⇀ui

′ be such that M′
1(mS

1) = {
ÐÐÐ⇀
xi = v′i} and M′

2(mS
2) = {

ÐÐÐ⇀
xi = u′i}.

Since v ≈φ

α u, by Lemma 27, we have v▸α τc ≈φ

α u▸α τc. Since v′c = v▸α τc and u′c = u▸α τc, we therefore

have v′c ≈
φ

α u′c. Therefore, from M1 ≈φ

α M2, it follows that {
ÐÐÐ⇀
xi = v′i} ≈

φ

α {
ÐÐÐ⇀
xi = u′i}.

Otherwise, mS0
0 ≠mS

1, so M′
1(mS0

0 ) =M1(mS0
0 ) and M′

2(φ(mS0
0 )) =M2(φ(mS0

0 )). The result therefore follows
from M1 ≈φ

α M2.

Now, let mS0
0 ∈ dom(φ) be such that ⊢ α ≼ auth+(S0) ⊓ persist(S0) and M′

1(mS0
0 ) = �. We show that

M′
2(φ(mS0

0 )) = �. This follows from M1 ≈φ

α M2 by construction of M′
1 and M′

2.

Case DANGLE-ASSIGN (⟨mS
1.xc ∶= v,M1⟩ →α ⟨�p ▸α p,M1⟩, where S = {ÐÐ⇀xi ∶ τi}(a,p) and M1(mS) = �):

From ⊢α

[wf] ⟨m
S
1.xc ∶= v,M1⟩, nc(mS

1,⟨mS
1.xc ∶= v,M1⟩), and M1(mS

1) =�, we know α /≼ p. Therefore, �p▸α p= [�p].

From e1 ≈φ

α e2, we know e2 =mS
2.xc ∶= u with φ(mS

1) =mS
2 and v ≈φ

α u. If M2(mS
2) = �, then by DANGLE-ASSIGN,

⟨e2,M2⟩ → ⟨[�p],M2⟩.
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Otherwise, M2(mS
2)≠�. Since α /≼ p, we have ∗▸α p= [∗]. So, by ASSIGN, ⟨e2,M2⟩→⟨[∗],M2[mS

2.xc↦ u▸α τc]⟩.
Choose φ

′ = φ.

i. We need to show [�p] ≈φ

α [u′] for u′ ∈ {∗,�p}.
This is trivial.

ii. We need to show M′
1 ≈

φ

α M′
2.

First, let mS0
0 ∈ dom(φ) be such that M′

1(mS0
0 ) ≠ �. We show that M′

2(φ(mS0
0 )) ≠ � and M′

1(mS0
0 ) ≈φ

α

M′
2(φ(mS0

0 )).

Since M′
1 = M1 and M′

1(mS0
0 ) ≠ �, we must have mS0

0 ≠ mS
1, so M′

1(mS0
0 ) = M1(mS0

0 ) and M′
2(φ(mS0

0 )) =
M2(φ(mS0

0 )). The result therefore follows from M1 ≈φ

α M2.

Now, let mS0
0 ∈ dom(φ) be such that ⊢ α ≼ auth+(S0) ⊓ persist(S0) and M′

1(mS0
0 ) = �. We show that

M′
2(φ(mS0

0 )) = �. This follows from M1 ≈φ

α M2 by construction of M′
2.

Case SOFT-ASSIGN (⟨(soft mS
1).xc ∶= v,M1⟩→α ⟨v′ ▸α (a⊓ p),M′

1⟩, where ⟨mS
1.xc ∶= v,M1⟩

eÐ→⟨v′,M′
1⟩ and S={ÐÐ⇀xi ∶ τi}(a,p)):

From e1 ≈φ

α e2, we know e2 = ((soft mS
2).xc ∶= u) with φ(mS

1) = mS
2 and v ≈φ

α u. If we can find a configuration
⟨u′,M′

2⟩ so that ⟨mS
2.xc ∶= u,M2⟩

eÐ→⟨u′,M′
2⟩, then by SOFT-ASSIGN, we have ⟨e2,M2⟩ = ⟨(soft mS

2).xc ∶= u,M2⟩→
⟨u′ ▸α (a⊓ p),M′

2⟩. Choose φ
′ = φ.

We proceed by cases according to the evaluation rules for ⟨mS
1.xc ∶= v,M1⟩

eÐ→ ⟨v′,M′
1⟩.

Sub-case ASSIGN (v′ = ∗▸α p and M′
1 =M1[mS

1.xc↦ v▸α τc], where M1(mS
1) ≠ �):

From M1 ≈φ

α M2, we know M2(mS
2) ≠ �. So, by ASSIGN, we have

⟨mS
2.xc ∶= u,M2⟩

eÐ→ ⟨∗▸α p,M2[mS
2.xc↦ u▸α τc]⟩ .

So u′ = ∗▸α p and M′
2 =M2[mS

2.xc↦ u▸α τc].

i. We need to show (∗▸α p)▸α (a⊓ p) ≈φ

α (∗▸α p)▸α (a⊓ p).
This follows via Lemma 27.

ii. We need to show M1[mS
1.xc↦ v▸α τc] ≈φ

α M2[mS
2.xc↦ u▸α τc].

First, let mS0
0 ∈ dom(φ) be such that M′

1(mS0
0 ) ≠ �. We show that M′

2(φ(mS0
0 )) ≠ � and M′

1(mS0
0 ) ≈φ

α

M′
2(φ(mS0

0 )).

If mS0
0 =mS

1, then φ(mS0
0 ) =mS

2. LetÐ⇀vi
′ andÐ⇀ui

′ be such that M′
1(mS

1) = {
ÐÐÐ⇀
xi = v′i} and M′

2(mS
2) = {

ÐÐÐ⇀
xi = u′i}.

Since v ≈φ

α u, by Lemma 27, we have v▸α τc ≈φ

α u▸α τc. Since v′c = v▸α τc and u′c = u▸α τc, we therefore

have v′c ≈
φ

α u′c. Therefore, from M1 ≈φ

α M2, it follows that {
ÐÐÐ⇀
xi = v′i} ≈

φ

α {
ÐÐÐ⇀
xi = u′i}. Otherwise, mS0

0 ≠ mS
1,

so M′
1(mS0

0 ) =M1(mS0
0 ) and M′

2(φ(mS0
0 )) =M2(φ(mS0

0 )). The result therefore follows from M1 ≈φ

α M2.
Now, let mS0

0 ∈ dom(φ) be such that ⊢ α ≼ auth+(S0)⊓persist(S0) and M′
1(mS0

0 ) = �. We show that
M′

2(φ(mS0
0 )) = �. This follows from M1 ≈φ

α M2 by construction of M′
1 and M′

2.

Sub-case DANGLE-ASSIGN (v′ = �p ▸α p and M′
1 =M1, where M1(mS

1) = �):

First, suppose ⊢ α ≼ a⊓ p. Then v′ ▸α (a⊓ p) = �p and u′ ▸α (a⊓ p) = u′, and from M1 ≈φ

α M2, we know
M2(mS

2) =�. So, by DANGLE-ASSIGN, we have ⟨mS
2.xc ∶= u,M2⟩

eÐ→⟨�p ▸α p,M2⟩. Therefore, u′ =�p▸α p=
�p and M′

2 =M2.

i. We need to show �p ≈φ

α �p.
This is trivial.

ii. We need to show M1 ≈φ

α M2.
This is given.
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Now, suppose α /≼ a⊓ p. Then v′ ▸α (a⊓ p) = [�p].
If M2(mS

2) = �, then by DANGLE-ASSIGN, ⟨mS
2.xc ∶= u,M2⟩

eÐ→ ⟨�p ▸α p,M2⟩. Otherwise, M2(mS
2) ≠ �, and

by ASSIGN, ⟨mS
2.xc ∶= u,M2⟩

eÐ→⟨∗▸α p,M2[mS
2.xc↦ u▸α τc]⟩. Therefore, u′▸α (a⊓ p) ∈ {(�p▸α p)▸α (a⊓

p),(∗▸α p)▸α (a⊓ p)} = {[�p],[∗]}.

i. We need to show [�p] ≈φ

α [u′] for u′ ∈ {∗,�p}.
This is trivial.

ii. We need to show M′
1 ≈

φ

α M′
2.

First, let mS0
0 ∈ dom(φ) be such that M′

1(mS0
0 ) ≠ �. We show that M′

2(φ(mS0
0 )) ≠ � and M′

1(mS0
0 ) ≈φ

α

M′
2(φ(mS0

0 )).
Since M′

1 = M1 and M′
1(mS0

0 ) ≠ �, we must have mS0
0 ≠ mS

1, so M′
1(mS0

0 ) = M1(mS0
0 ) and M′

2(φ(mS0
0 )) =

M2(φ(mS0
0 )). The result therefore follows from M1 ≈φ

α M2.
Now, let mS0

0 ∈dom(φ) be such that ⊢α≼persist(S0) and M′
1(mS0

0 ) =�. We show that M′
2(φ(mS0

0 )) =�.
This follows from M1 ≈φ

α M2 by construction of M′
2.

Case APPLY (⟨(λ(x ∶τ)[pc;H].e3) v1,M1⟩ →α ⟨e3{v1/x},M1⟩):

From e1 ≈φ

α e2, we know that e2 = ((λ(x ∶τ)[pc;H].e4) v2), where e3 ≈φ

α e4 and v1 ≈φ

α v2. By APPLY, we have
⟨(λ(x ∶τ)[pc;H].e4) v2,M2⟩ → ⟨e4{v2/x},M2⟩. Choose φ

′ = φ.

i. We need to show e3{v1/x} ≈φ

α e4{v2/x}.
This follows by Lemma 26.

ii. We need to show M1 ≈φ

α M2.
This is given.

Case EXISTS-TRUE (⟨exists soft mS
1 as x ∶ e3 else e4,M1⟩ →α

⟨(e3{mS
1/x})▸α (a⊓ p),M1⟩, where M1(mS

1) ≠ � and S = {ÐÐ⇀xi ∶ τi}(a,p)):

From e1 ≈φ

α e2, we know that e2 = exists soft mS
2 as x ∶ e5 else e6, where φ(mS

1) =mS
2 and e3 ≈φ

α e5. Since M1 ≈φ

α M2
and M1(mS

1) ≠ �, we know M2(mS
2) ≠ �, so by EXISTS-TRUE, we have

⟨exists soft mS
2 as x ∶ e5 else e6,M2⟩ → ⟨(e5{mS

2/x})▸α (a⊓ p),M2⟩

Choose φ
′ = φ.

i. We need to show (e3{mS
1/x})▸α (a⊓ p) ≈φ

α (e5{mS
2/x})▸α (a⊓ p).

This follows by Lemmas 26 and 27.

ii. We need to show M1 ≈φ

α M2.
This is given.

Case EXISTS-FALSE (⟨exists soft mS
1 as x ∶ e3 else e4,M1⟩→α ⟨e4 ▸α (a⊓ p),M1⟩, where S={ÐÐ⇀xi ∶ τi}(a,p) and M1(mS

1)=
�):

From e1 ≈φ

α e2, we know that e2 = exists soft mS
2 as x ∶ e5 else e6, where φ(mS

1) =mS
2 and e4 ≈φ

α e6. We proceed by
cases according to whether ⊢ α ≼ a⊓ p.

Sub-case ⊢ α ≼ a⊓ p:
We therefore know e4▸α (a⊓ p) = e4 and ⊢α ≼ p. So, from M1 ≈φ

α M2 and M1(mS
1) = �, we know M2(mS

2) =
�, so by EXISTS-FALSE, we have ⟨exists soft mS

2 as x ∶ e5 else e6,M2⟩ → ⟨e6,M2⟩. Choose φ
′ = φ.

i. We need to show e4 ≈φ

α e6.
This is given.

ii. We need to show M1 ≈φ

α M2.
This is given.
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Sub-case α /≼ a⊓ p:
We therefore have e4 ▸α (a⊓ p) = [e′4] for some e′4. If M2(mS

2) = �, then by EXISTS-FALSE, we have
⟨exists soft mS

2 as x ∶ e5 else e6,M2⟩ → ⟨[e′6],M2⟩, for some e′6. Otherwise, by EXISTS-TRUE, we have
⟨exists soft mS

2 as x ∶ e5 else e6,M2⟩ → ⟨[e′5],M2⟩, for some e′5. Choose φ
′ = φ.

i. We need to show [e′4] ≈
φ

α [e′′2 ] for e′′2 ∈ {e′5,e
′
6}.

This is trivial.
ii. We need to show M1 ≈φ

α M2.
This is given.

Case TRY-VAL (⟨try v1 catch p∶ e3,M1⟩ →α ⟨v1,M1⟩, where ∀p′. v1 ≠ �p′ and ∀v′1. v1 ≠ [v′1]):

From e1 ≈φ

α e2, we know that e2 = (try v2 catch p∶ e4), where v1 ≈φ

α v2 and e3 ≈φ

α e4. From this, it follows that by
TRY-VAL, we have ⟨try v2 catch p∶ e4,M2⟩ → ⟨v2,M2⟩. Choose φ

′ = φ.

i. We need to show v1 ≈φ

α v2.
This is given.

ii. We need to show M1 ≈φ

α M2.
This is given.

Case TRY-CATCH (⟨try �p′ catch p∶ e3,M1⟩ →α ⟨e3,M1⟩, where ⊢ p ≼ p′):

From e1 ≈φ

α e2, we know that e2 =(try �p′ catch p∶ e4), where e3 ≈φ

α e4. By TRY-CATCH, we have ⟨try �p′ catch p∶ e4,M2⟩→
⟨e4,M2⟩. Choose φ

′ = φ.

i. We need to show e3 ≈φ

α e4.
This is given.

ii. We need to show M1 ≈φ

α M2.
This is given.

Case TRY-ESC (⟨try �p′ catch p∶ e3,M1⟩ →α ⟨�p′ ,M1⟩, where p /≼ p′):

From e1 ≈φ

α e2, we know that e2 = (try �p′ catch p∶ e4). By TRY-ESC, we have ⟨try �p′ catch p∶ e4,M2⟩ →
⟨�p′ ,M2⟩. Choose φ

′ = φ.

i. We need to show �p′ ≈φ

α �p′ .
This is trivial.

ii. We need to show M1 ≈φ

α M2.
This is given.

Case PARALLEL-RESULT (⟨v1∥v2,M1⟩ →α ⟨∗,M1⟩):

From e1 ≈φ

α e2, we know that e2 = u1∥u2, where vi ≈φ

α ui for i ∈ {1,2}. By PARALLEL-RESULT, we have
⟨u1∥u2,M2⟩ → ⟨∗,M2⟩. Choose φ

′ = φ.

i. We need to show ∗ ≈φ

α ∗.
This is trivial.

ii. We need to show M1 ≈φ

α M2.
This is given.

Case IF-TRUE (⟨if true then e3 else e4,M1⟩ →α ⟨e3,M1⟩):

From e1 ≈φ

α e2, we know that e2 =(if true then e5 else e6), where e3 ≈φ

α e5. By IF-TRUE, we have ⟨if true then e5 else e6,M2⟩→
⟨e5,M2⟩. Choose φ

′ = φ.
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i. We need to show e3 ≈φ

α e5.
This is given.

ii. We need to show M1 ≈φ

α M2.
This is given.

Case IF-FALSE (⟨if false then e3 else e4,M1⟩ →α ⟨e4,M1⟩):

From e1 ≈φ

α e2, we know that e2 =(if false then e5 else e6), where e4 ≈φ

α e6. By IF-FALSE, we have ⟨if false then e5 else e6,M2⟩→
⟨e6,M2⟩. Choose φ

′ = φ.

i. We need to show e4 ≈φ

α e6.
This is given.

ii. We need to show M1 ≈φ

α M2.
This is given.

Case LET (⟨let x = v1 in e3,M1⟩ →α ⟨e3{v1/x},M1⟩, where ∀p. v1 ≠ �p and ∀v′1. v1 ≠ [v′1]):

From e1 ≈φ

α e2, we know that e2 =(let x= v2 in e4), where v1 ≈φ

α v2 and e3 ≈φ

α e4. By LET, we have ⟨let x = v2 in e4,M2⟩→
⟨e4{v2/x},M2⟩. Choose φ

′ = φ.

i. We need to show e3{v1/x} ≈φ

α e4{v2/x}.
This follows by Lemma 26.

ii. We need to show M1 ≈φ

α M2.
This is given.

Case EVAL-CONTEXT (⟨E[e3],M1⟩ →α ⟨E[e′3],M′
1⟩, where ⟨e3,M1⟩

eÐ→ ⟨e′3,M′
1⟩):

We proceed by cases according to the syntax of E[ ⋅]. We only show the case E[ ⋅] = try [ ⋅] catch p∶ e4; the
other cases follow similarly.

Sub-case E[ ⋅] = (try [ ⋅] catch p∶ e4):

From e1 ≈φ

α e2, we know e2 = (try e5 catch p∶ e6), where e3 ≈φ

α e5 and e4 ≈φ

α e6. To apply the induction
hypothesis, we need:

• ⊢α

[wf] ⟨e3,M1⟩ and ⊢[wf] ⟨e5,M2⟩
These follow from

⊢α

[wf] ⟨try e3 catch p∶ e4,M1⟩
and

⊢[wf] ⟨try e5 catch p∶ e6,M2⟩ .
• ∅;pc;H′ ⊢ e3 ∶ τ′,X ′ and ∅;pc;H′ ⊢ e5 ∶ τ′,X ′, for someH′, τ

′, X ′

These follow from the typing derivations for try e3 catch p∶ e4 and try e5 catch p∶ e6.

• ⊢α

[wf] M2 and ⟨e3,M1⟩ ≈φ

α ⟨e5,M2⟩.
These are given.

Therefore, we can apply the induction hypothesis to get a configuration ⟨e′5,M′
2⟩ and a high-integrity

homomorphism φ
′ from M′

1 to M′
2 that extends φ, such that ⟨e5,M2⟩ → ⟨e′5,M′

2⟩ and

⟨e′3,M′
1⟩ ≈

φ
′

α ⟨e′5,M′
2⟩. (14)

So, by EVAL-CONTEXT, we have

⟨try e5 catch p∶ e6,M2⟩ → ⟨try e′5 catch p∶ e6,M′
2⟩ .

From (14), we know ⟨try e′3 catch p∶ e4,M′
1⟩ ≈

φ
′

α ⟨try e′5 catch p∶ e6,M′
2⟩, as desired.
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In case E[ ⋅] = soft [ ⋅], where e2 = soft e4, to apply the induction hypothesis, we need the additional fact that
since e3 is not a value, neither is e4, and therefore ⊢α

[wf] ⟨soft e3,M1⟩ and ⊢[wf] ⟨soft e4,M2⟩ imply ⊢α

[wf] ⟨e3,M1⟩
and ⊢[wf] ⟨e4,M2⟩.

Case FAIL-PROP (⟨F[�p],M1⟩ →α ⟨�p,M1⟩):

From e1 ≈φ

α e2, we know that e2 = F ′[�p]. By FAIL-PROP, we have ⟨F ′[�p],M2⟩ → ⟨�p,M2⟩. Choose φ
′ = φ.

i. We need to show �p ≈φ

α �p.
This is trivial.

ii. We need to show M1 ≈φ

α M2.
This is given.

Case GC (⟨e1,M1⟩ →α ⟨e1,M1[G↦�]⟩, where gc(G,⟨e1,M1⟩)):

By Lemma 25, let G′ be such that C ⊆G′ ⊆ φ(G) and gc(G′,⟨e2,M2⟩), where

C = {φ(mS) ∶mS ∈G∩dom(φ)∧ ⊢ α ≼ auth+(S)⊓persist(S)}

and
φ(G) = {φ(mS) ∶mS ∈G∩dom(φ)}.

Then, by GC, we have ⟨e2,M2⟩ → ⟨e2,M2[G′↦�]⟩. Choose φ
′ = φ.

i. We need to show e1 ≈φ

α e2.
This is given.

ii. We need to show M1[G↦�] ≈φ

α M2[G′↦�].
First, let mS0

0 ∈ dom(φ) be such that M′
1(mS0

0 ) ≠ �. We show that M′
2(φ(mS0

0 )) ≠ � and M′
1(mS0

0 ) ≈φ

α

M′
2(φ(mS0

0 )).

Since M′
1(mS0

0 ) ≠ �, we know mS0
0 /∈G and φ(mS0

0 ) /∈G′. Therefore, M′
1(mS0

0 ) =M1(mS0
0 ) and M′

2(φ(mS0
0 )) =

M2(φ(mS0
0 )), so the result follows from the assumption M1 ≈φ

α M2.

Now, let mS0
0 ∈ dom(φ) be such that ⊢ α ≼ auth+(S0) ⊓ persist(S0) and M′

1(mS0
0 ) = �. We show that

M′
2(φ(mS0

0 )) = �. If mS0
0 ∈ G, then φ(mS0

0 ) ∈ G′, and the result follows by construction of M′
2. Other-

wise, mS0
0 /∈ G, and so, φ(mS0

0 ) /∈ G′. Therefore, M′
1(mS0

0 ) = M1(mS0
0 ) and M′

2(φ(mS0
0 )) = M2(φ(mS0

0 )), so
the result follows from the assumption M1 ≈φ

α M2.

Cases BRACKET-SELECT and BRACKET-SOFT-SELECT
(⟨[v].xc,M1⟩ →α ⟨[v.xc],M1⟩, where v ∈ {mS1

1 ,soft mS1
1 }):

From e1 ≈φ

α e2, we know that e2 = [u].xc. From the grammar, we must have u ∈ {mS2
2 ,soft mS2

2 }. If u = mS2
2 , then

by BRACKET-SELECT, ⟨[mS2
2 ].xc,M2⟩ → ⟨[mS2

2 .xc],M2⟩. Otherwise, u = soft mS2
2 , and by BRACKET-SOFT-

SELECT, ⟨[soft mS2
2 ].xc,M2⟩ → ⟨[(soft mS2

2 ).xc],M2⟩. Choose φ
′ = φ.

i. We need to show [v.xc] ≈φ

α [u.xc].
This is trivial.

ii. We need to show M1 ≈φ

α M2.
This is given.

Case BRACKET-ASSIGN (⟨[v1].xc ∶= v2,M1⟩ →α ⟨[v1.xc ∶= v2],M1⟩):

From e1 ≈φ

α e2, we know that e2 = [u1].xc ∶=u2. By BRACKET-ASSIGN, we have ⟨[u1].xc ∶= u2,M2⟩→⟨[u1.xc ∶= u2],M2⟩.
Choose φ

′ = φ.
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i. We need to show [v1.xc ∶= v2] ≈φ

α [u1.xc ∶= u2].
This is trivial.

ii. We need to show M1 ≈φ

α M2.
This is given.

Case BRACKET-SOFT (⟨soft [v],M1⟩ →α ⟨[soft v],M1⟩):

From e1 ≈φ

α e2, we know that e2 = soft [e3]. Since ⟨e2,M2⟩ is assumed to not diverge, ⟨e3,M2⟩ cannot diverge
either. So, by Corollary 14, there is a configuration ⟨u,M′

2⟩ such that ⟨e3,M2⟩
eÐ→∗ ⟨u,M′

2⟩. Then by EVAL-
CONTEXT, BRACKET-CONTEXT, and BRACKET-SOFT, we have

⟨soft [e3],M2⟩ →∗ ⟨soft [u],M′
2⟩ → ⟨[soft u],M′

2⟩ .

Choose φ
′ = φ.

i. We need to show [soft v] ≈φ

α [soft u].
This is trivial.

ii. We need to show M1 ≈φ

α M′
2.

This follows by Lemma 29.

Case BRACKET-EXISTS
(⟨exists [v] as x ∶ e3 else e4,M1⟩ →α ⟨[exists v as x ∶ e3 else e4],M1⟩):

From e1 ≈φ

α e2, we know that e2 = exists [u] as x ∶ e5 else e6. By BRACKET-EXISTS, we have

⟨exists [u] as x ∶ e5 else e6,M2⟩ → ⟨[exists u as x ∶ e5 else e6],M2⟩

Choose φ
′ = φ.

i. We need to show [exists v as x ∶ e3 else e4] ≈φ

α [exists u as x ∶ e5 else e6].
This is trivial.

ii. We need to show M1 ≈φ

α M2.
This is given.

Case BRACKET-APPLY (⟨[v1] v2,M1⟩ →α ⟨[v1 v2],M1⟩):

From e1 ≈φ

α e2, we know that e2 = ([u1] u2). By BRACKET-APPLY, we have ⟨[u1] u2,M2⟩ → ⟨[u1 u2],M2⟩.
Choose φ

′ = φ.

i. We need to show [v1 v2] ≈φ

α [u1 u2].
This is trivial.

ii. We need to show M1 ≈φ

α M2.
This is given.

Case BRACKET-TRY (⟨try [v] catch p∶ e3,M1⟩ →α ⟨[try v catch p∶ e3],M1⟩):

From e1 ≈φ

α e2, we know that e2 = (try [e4] catch p∶ e5). Since ⟨e2,M2⟩ is assumed to not diverge, ⟨e4,M2⟩
cannot diverge either. So, by Corollary 14, there is a configuration ⟨u,M′

2⟩ such that ⟨e4,M2⟩
eÐ→∗ ⟨u,M′

2⟩. Then
by EVAL-CONTEXT, BRACKET-CONTEXT, and BRACKET-TRY, we have

⟨try [e4] catch p∶ e5,M2⟩ →∗ ⟨try [u] catch p∶ e5,M′
2⟩ → ⟨[try u catch p∶ e5],M′

2⟩ .

Choose φ
′ = φ.

i. We need to show [try v catch p∶ e3] ≈φ

α [try u catch p∶ e5].
This is trivial.
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ii. We need to show M1 ≈φ

α M′
2.

This follows by Lemma 29.

Case BRACKET-IF (⟨if [v] then e3 else e4,M1⟩ →α ⟨[if v then e3 else e4],M1⟩):

From e1 ≈φ

α e2, we know that e2 = (if [u] then e5 else e6). By BRACKET-IF, we have

⟨if [u] then e5 else e6,M2⟩ → ⟨[if u then e5 else e6],M2⟩ .

Choose φ
′ = φ.

i. We need to show [if v then e3 else e4] ≈φ

α [if u then e5 else e6].
This is trivial.

ii. We need to show M1 ≈φ

α M2.
This is given.

Case BRACKET-LET (⟨let x = [v] in e3,M1⟩ →α ⟨[e3{[v]/x}],M1⟩, where ∀p. v ≠ �p):

From e1 ≈φ

α e2, we know that e2 = (let x = [u] in e4). If ∀p. u ≠ �p, then by BRACKET-LET, we have

⟨let x = [u] in e4,M2⟩ → ⟨[e4{[u]/x}],M2⟩ .

Otherwise, let p be such that u = �p. Then, by BRACKET-FAIL, we have

⟨let x = [u] in e4,M2⟩ → ⟨[�p],M2⟩ .

Choose φ
′ = φ.

i. We need to show [e3{[v]/x}] ≈φ

α [e′′2 ], where e′′2 ∈ {e4{[u]/x},�p}.
This is trivial.

ii. We need to show M1 ≈φ

α M2.
This is given.

Case DOUBLE-BRACKET (⟨[[v]],M1⟩ →α ⟨[v],M1⟩):

From e1 ≈φ

α e2, we know that e2 = [e′′2 ], so we trivially have ⟨[e′′2 ],M2⟩ →∗ ⟨[e′′2 ],M2⟩. Choose φ
′ = φ.

i. We need to show [v] ≈φ

α [e′′2 ].
This is trivial.

ii. We need to show M1 ≈φ

α M2.
This is given.

Case BRACKET-CONTEXT (⟨[e3],M1⟩ →α ⟨[e′3],M′
1⟩, where ⟨e3,M1⟩

eÐ→ ⟨e′3,M′
1⟩):

From e1 ≈φ

α e2, we know that e2 = [e4], and we trivially have ⟨[e4],M2⟩
eÐ→∗ ⟨[e4],M2⟩. Choose φ

′ = φ.

i. We need to show [e′3] ≈
φ

α [e4].
This is trivial.

ii. We need to show M′
1 ≈

φ

α M2.
This follows by Lemma 29.

Case BRACKET-FAIL (⟨F[[�p]],M1⟩ →α ⟨[�p],M1⟩):

From e1 ≈φ

α e2, an easy case analysis on the syntax of F[ ⋅] shows that ⟨e2,M2⟩→ ⟨[�p],M2⟩ via BRACKET-FAIL.
Choose φ

′ = φ.
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i. We need to show [�p] ≈φ

α [�p].
This is trivial.

ii. We need to show M1 ≈φ

α M2.
This is given.

Case α-CREATE (⟨e1,M1⟩ →α ⟨e1,M1[mS ↦{
ÐÐÐÐ⇀
xi = [vi]}]⟩, where mS is fresh, ∅;⊺;⊺ ⊢ {

ÐÐÐÐ⇀
xi = [vi]}S ∶ R⊺,⊺, ⊢α

[wf]

M[mS ↦{
ÐÐÐÐ⇀
xi = [vi]}, and α /≼ persist(S)) ∶

We trivially have ⟨e2,M2⟩ →∗ ⟨e2,M2⟩. Choose φ
′ = φ.

i. We need to show e1 ≈φ

α e2.
This is given.

ii. We need to show M1[mS ↦{
ÐÐÐÐ⇀
xi = [vi]}] ≈φ

α M2.

Since mS /∈ dom(φ), this follows from the assumption M1 ≈φ

α M2 by construction of M′
1.

Case α-ASSIGN (⟨e1,M1⟩ →α ⟨e1,M1[mS.xc↦ [v]]⟩, where mS ∈ dom(M1), M1(mS) ≠ �, S = {ÐÐ⇀xi ∶ τi}s, ∅;⊺;⊺ ⊢ [v] ∶
τc,⊺, and ⊢α

[wf] M1[mS.xc↦ [v]]):

We trivially have ⟨e2,M2⟩ →∗ ⟨e2,M2⟩. Choose φ
′ = φ.

i. We need to show e1 ≈φ

α e2.
This is given.

ii. We need to show M1[mS.xc↦ [v]] ≈φ

α M2.

If mS /∈ dom(φ), then this follows from the assumption M1 ≈φ

α M2 by construction of M′
1.

Suppose mS ∈ dom(φ). Then it suffices to show that M′
1(mS) ≈φ

α M2(φ(mS)), since the rest follows from
M1 ≈φ

α M2.

Let Ð⇀vi ,
Ð⇀
v′i , and Ð⇀ui be such that M1(mS) = {ÐÐÐ⇀xi = vi} M′

1(mS) = {
ÐÐÐ⇀
xi = v′i} and M2(mS) = {ÐÐÐ⇀xi = ui}. From

M1 ≈φ

α M2, we know vi ≈φ

α ui for all i. By construction of M′
1, we have v′c = [v] and v′i = vi for i ≠ c.

Therefore, it remains to be shown that [v] ≈φ

α uc.
From ∅;⊺;⊺ ⊢ [v] ∶ τc,⊺, we know that α /≼ integ(τc). Therefore, from ⊢α

[wf] M2, we must have uc = [u], for

some u. The result [v] ≈φ

α uc then follows trivially.

Case α-FORGET (⟨e1,M1⟩ →α ⟨e1,M1[mS ↦�]⟩, where mS ∈ dom(M1) and α /≼ persist(S)):

We trivially have ⟨e2,M2⟩ →∗ ⟨e2,M2⟩. Choose φ
′ = φ.

i. We need to show e1 ≈φ

α e2.
This is given.

ii. We need to show M1[mS ↦�] ≈φ

α M2.

This follows from the assumption M1 ≈φ

α M2, since α /≼ persist(S).

8.6 Storage attacks
To formalize immunity to storage attacks, we first show that the adversary cannot cause more high-persistence loca-
tions to be allocated. Theorem 1 captures this via the security relation, since all high-persistence locations are mapped
by the homomorphism. We now show that the adversary cannot cause more high-authority locations to become non-
collectible. Lemma 30 says that this is also implied by Theorem 1.
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Lemma 30. Assume ⟨e1,M1⟩ is a well-formed configuration and ⟨e2,M2⟩ is a well-formed, nonadversarial, φ-related
configuration, such that e1 and e2 have type τ and M2 is well-formed:

⊢α

[wf] ⟨e1,M1⟩ ∧ ⊢[wf] ⟨e2,M2⟩ ∧ ⟨e1,M1⟩ ≈φ

α ⟨e2,M2⟩
∧ ∅;pc;H⊢ e1 ∶ τ,X ∧ ∅;pc;H⊢ e2 ∶ τ,X ∧ ⊢α

[wf] M2

If mS is a high-authority, noncollectible location in ⟨e1,M1⟩, then φ(mS) is also noncollectible in ⟨e2,M2⟩.

⊢ α ≼ auth+(S)∧nc(mS,⟨e1,M1⟩)⇒ nc(φ(mS),⟨e2,M2⟩)

To prove this, we first prove a preliminary result about garbage-collection roots.

Lemma 31. Let e1 and e2 be well-typed expressions, both of type τ, that are related via a high-integrity homomorphism
φ. If mS is a high-authority GC root in e1, then φ(mS) is also a GC root in ⟨e2,M2⟩.

Γ;pc;H⊢ e1 ∶ τ,X ∧Γ;pc;H⊢ e2 ∶ τ,X
∧e1 ≈φ

α e2∧ ⊢ α ≼ auth+(S)∧ root(mS,e1)
⇒ root(φ(mS),e2)

Proof. By induction on the derivation of root(mS,e1). The proof proceeds by cases according to the syntax of e1. The
result holds vacuously in cases e1 = x, e1 = true, e1 = false, e1 = ∗, and e1 = soft mS1

1 , since ¬root(mS,e1) in these cases.

Case e1 =mS1
1 :

Since root(mS,mS1
1 ), we must have mS1

1 = mS. Therefore, from e1 ≈φ

α e2, we have e2 = φ(mS), and the result
follows via Rule R1.

Case e1 = λ(x ∶τ′)[pc′;H′].e3:

From e1 ≈φ

α e2, we have e2 = λ(x ∶ τ′)[pc′;H′].e4, where e3 ≈φ

α e4. From the typing of e1 and e2, we have
Γ,x ∶τ′;pc′;H′ ⊢ e3 ∶ τ′′,H′ and Γ,x ∶τ′;pc′;H′ ⊢ e4 ∶ τ′′,H′, for some pc′, H′, and τ

′′. From the derivation of
root(mS,e1), we know root(mS,e3). Therefore, we can apply the induction hypothesis to obtain root(φ(mS),e4),
and the result follows via Rule R6.

Case e1 = v1 v2:

From the derivation of root(mS,e1), we know root(mS,v1) or root(mS,v2). Without loss of generality, assume
root(mS,v1). From e1 ≈φ

α e2, we have e2 = v3 v4, where v1 ≈φ

α v3. From the typing of e1 and e2, we have
Γ;pc;H ⊢ v1 ∶ τ′,⊺ and Γ;pc;H ⊢ v3 ∶ τ′,⊺, for some τ

′. Therefore, we can apply the induction hypothesis to
obtain root(φ(mS),v1), and the result follows via Rule R7.

Case e1 = if e3 then e4 else e5:

From the derivation of root(mS,e1), we know root(mS,ek) for some k ∈ {3,4,5}. From e1 ≈φ

α e2, we have
e2 = if e′3 then e′4 else e′5, where ei ≈φ

α e′i for i ∈ {3,4,5}. From the typing of e1 and e2, we have Γ;pc′;H⊢ ek ∶ τ′,X ′

and Γ;pc′;H⊢ e′k ∶ τ′,X ′, for some pc′, τ
′, and X ′. Therefore, we can apply the induction hypothesis to obtain

root(φ(mS),e′k), and the result follows via Rule R10.

Case e1 = {ÐÐÐ⇀xi = vi}S1 :

From the derivation of root(mS,e1), we know root(mS,vk) for some k. From e1 ≈φ

α e2, we have e2 = {ÐÐÐ⇀xi = ui}S1 ,
where vi ≈φ

α ui for all i. From the typing of e1 and e2, we have Γ;pc;H ⊢ ek ∶ τ′,⊺ and Γ;pc;H ⊢ e′k ∶ τ′,⊺, for
some τ

′. Therefore, we can apply the induction hypothesis to obtain root(φ(mS),uk), and the result follows via
Rule R3.

Case e1 = v.x:

From the derivation of root(mS,e1), we know root(mS,v). From e1 ≈φ

α e2, we have e2 = u.x, where v ≈φ

α u. From
the typing of e1 and e2, we have Γ;pc;H⊢ v ∶ τ′,⊺ and Γ;pc;H⊢ u ∶ τ′,⊺, for some τ

′. Therefore, we can apply
the induction hypothesis to obtain root(φ(mS),u), and the result follows via Rule R4.

55



Case e1 = v1.x ∶= v2:

From the derivation of root(mS,e1), we know root(mS,vk) for some k. From e1 ≈φ

α e2, we have e2 = u1.x ∶= u2,
where vi ≈φ

α ui for i ∈ {1,2}. From the typing of e1 and e2, we have Γ;pc;H ⊢ vk ∶ τ′,⊺ and Γ;pc;H ⊢ uk ∶ τ′,⊺,
for some τ

′. Therefore, we can apply the induction hypothesis to obtain root(φ(mS),uk), and the result follows
via Rule R5.

Case e1 = soft e3:

From the derivation of root(mS,e1), we know root(mS,e3) and e3 is not a memory location. From e1 ≈φ

α e2, we
have e2 = soft e4, where e3 ≈φ

α e4; therefore, e4 is not a memory location. From the typing of e1 and e2, we have
Γ;pc;H ⊢ e3 ∶ τ′,X and Γ;pc;H ⊢ e4 ∶ τ′,X , for some τ

′. Therefore, we can apply the induction hypothesis to
obtain root(φ(mS),e4), and the result follows via Rule R2.

Case e1 = e3∥e4:

From the derivation of root(mS,e1), we know root(mS,ek) for some k ∈ {3,4}. From e1 ≈φ

α e2, we have e2 =
e′3∥e′4, where ei ≈φ

α e′i for i ∈ {3,4}. From the typing of e1 and e2, we have Γ;pc;⊺⊢ ek ∶ τ′,⊺ and Γ;pc;⊺⊢ e′k ∶ τ′,⊺,
for some τ

′. Therefore, we can apply the induction hypothesis to obtain root(φ(mS),e′k), and the result follows
via Rule R9.

Case e1 = exists e3 as x ∶ e4 else e5:

From the derivation of root(mS,e1), we know root(mS,ek) for some k ∈ {3,4,5}. From e1 ≈φ

α e2, we have
e2 = exists e′3 as x ∶ e′4 else e′5, where ei ≈φ

α e′i for i ∈ {3,4,5}. From the typing of e1 and e2, we have Γ
′;pc′;H⊢ ek ∶

τ
′,X ′ and Γ

′;pc′;H⊢ e′k ∶ τ′,X ′, for some Γ
′, pc′, τ

′ and X ′. Therefore, we can apply the induction hypothesis
to obtain root(φ(mS),e′k), and the result follows via Rule R11.

Case e1 = let x = e3 in e4:

From the derivation of root(mS,e1), we know root(mS,ek) for some k ∈ {3,4}. From e1 ≈φ

α e2, we have e2 =
let x = e′3 in e′4, where ei ≈φ

α e′i for i ∈ {3,4}. From the typing of e1 and e2, we have Γ
′;pc′;H ⊢ ek ∶ τ′,X ′ and

Γ
′;pc′;H⊢ e′k ∶ τ′,X ′, for some Γ

′, pc′, τ
′, and X ′. Therefore, we can apply the induction hypothesis to obtain

root(φ(mS),e′k), and the result follows via Rule R8.

Case e1 = try e3 catch p∶ e4:

From the derivation of root(mS,e1), we know root(mS,ek) for some k ∈ {3,4}. From e1 ≈φ

α e2, we have e2 =
try e′3 catch p∶ e′4, where ei ≈φ

α e′i for i ∈ {3,4}. From the typing of e1 and e2, we have Γ;pc′;H ⊢ ek ∶ τ′,X ′

and Γ;pc′;H⊢ e′k ∶ τ′,X ′, for some pc′, τ
′, and X ′. Therefore, we can apply the induction hypothesis to obtain

root(φ(mS),e′k), and the result follows via Rule R12.

Case e1 = [e3]:
From the derivation of root(mS,e1), we know root(mS,e3). From the typing of e1, we know Γ;pc⊓ `;H ⊢
e3 ∶ τ

′,X for some ` and τ
′, where α /≼ ` and ⊢ auth+(τ

′) ≼ pc⊓ `. Therefore, by Lemma 15, we must have
α /≼ auth+(S), which contradicts the assumption ⊢ α ≼ auth+(S). So, this case holds vacuously.

We now prove Lemma 30, restated here for convenience.

Lemma 30. Assume ⟨e1,M1⟩ is a well-formed configuration and ⟨e2,M2⟩ is a well-formed, nonadversarial, φ-related
configuration, such that e1 and e2 have type τ and M2 is well-formed:

⊢α

[wf] ⟨e1,M1⟩ ∧ ⊢[wf] ⟨e2,M2⟩ ∧ ⟨e1,M1⟩ ≈φ

α ⟨e2,M2⟩
∧ ∅;pc;H⊢ e1 ∶ τ,X ∧ ∅;pc;H⊢ e2 ∶ τ,X ∧ ⊢α

[wf] M2

If mS is a high-authority, noncollectible location in ⟨e1,M1⟩, then φ(mS) is also noncollectible in ⟨e2,M2⟩.

⊢ α ≼ auth+(S)∧nc(mS,⟨e1,M1⟩)⇒ nc(φ(mS),⟨e2,M2⟩)
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Proof. By induction on the derivation of nc(mS,⟨e1,M1⟩).

Case NC1:

We have root(mS,e1). By Lemma 31, we therefore have root(φ(mS),e2), and the result follows by NC1.

Case NC2:

We have root(mS1
1 ,e1) and nc(mS,⟨vc,M1⟩) for some mS1

1 , where M1(mS1
1 ) = {ÐÐÐ⇀xi = vi}. It therefore follows that

nc(mS,⟨mS1
1 ,M1⟩), ⊢α

[wf] ⟨mS1
1 ,M1⟩, and ⊢α

[wf] ⟨vc,M1⟩.

Assume mS1
1 ≠mS. (Otherwise, we would have root(mS,e1), and the argument for Case NC1 applies.)

Since mS is high-authority and nc(mS,⟨mS1
1 ,M1⟩), by Corollary 18, we know mS1

1 is high-integrity, high-
authority, and high-persistence.

Since root(mS1
1 ,e1) and mS1

1 is high-authority, by Lemma 31, we know root(φ(mS1
1 ),e2).

From ⟨e1,M1⟩ ≈φ

α ⟨e2,M2⟩, we know M1 ≈φ

α M2. So, from M1(mS1
1 ) ≠ �, we have M2(φ(mS1

1 )) = {ÐÐÐ⇀xi = ui}, where
vc ≈φ

α uc, for some Ð⇀ui .

Since ⊢α

[wf] M1 and ⊢
[wf] M2, we also know ∅;⊺;⊺ ⊢ vc ∶ τc,⊺ and ∅;⊺;⊺ ⊢ uc ∶ τc,⊺, for some τc. Therefore, we

can apply the induction hypothesis to get nc(φ(mS),⟨uc,M2⟩).

The result follows via NC2.

9 Related work
This paper identifies and addresses a new problem, referential security. As a result, little prior work is closely related.

Some prior work has tried to improve referential integrity through system mechanisms, for example improving
the referential integrity of web hyperlinks [8, 12]. Systems mechanisms for improving referential integrity (and other
aspects of trustworthiness) are orthogonal to the language model presented here, but could be used to justify assigning
persistence, integrity, and authority levels to nodes.

Liblit and Aiken [13] develop a type system for distributed data structures. Its explicit two-level hierarchy dis-
tinguishes between local pointers that are meaningful only to a single processor, and global pointers that are valid
everywhere. The type system ensures that local pointers do not leak into a global context. This work was extended
in [14] to add types for dealing with private vs. shared data. However, this line of work does not consider security
properties that require defense against an adversary.

Riely and Hennessey study type safety in a distributed system of partially trusted mobile agents [20] but do not
consider referential security.

This paper builds on prior work on language-based information-flow security, much of which is summarized
by [21]. The Fabric system [16] is programmed in a high-level language that includes integrity annotations and
abstracts away the locations of objects, as λpersist does. Its type system does not enforce referential security, however,
so adding the features described here is an obvious next step.

10 Conclusions
Complex distributed information systems are being integrated across different organizations with only partial trust,
often in the context of cloud computing. But the security properties that are desirable in distributed computing are
poorly understood, and the options for enforcing security are murkier still. In fact, the desirable referential security
properties are actually in tension with each other. The result is that programmers have little guidance in designing
distributed systems to be secure and reliable.

This paper makes several contributions that aid in resolving this situation. The paper newly identifies and for-
malizes some important referential security properties. It introduces a high-level language for modeling referential
security issues in a distributed system. The language introduces a way to express referential security requirements
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through label annotations for persistence and creation authority, which can be viewed as different aspects of integrity.
The paper demonstrates how to enforce referential security, through static analysis expressed as a type system in the
language. The type system is validated by formal proofs that λpersist programs enforce the new security properties.

While this paper is a useful first step, clearly there is more to be done. The type system could be enriched with more
features such as parametric polymorphism, recursive and dependent types. With such extensions, an implementation
would then help evaluate how well these types guide programmers designing distributed computing systems.
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A Appendix

A.1 Full syntax of λpersist

Policy levels w,a, p,` ∈ L

Variables x,y ∈ Var PC labels pc ∶∶= w
Memory locations m ∈ Mem Storage labels s ∶∶= (a, p)

Labeled record types S ∶∶= {
ÐÐ⇀xi ∶ τi}s Reference labels r ∶∶= (a+,a−, p)

Labeled reference types R ∶∶= {
ÐÐ⇀xi ∶ τi}r Persistence failure handlers H ∶∶=

Ð⇀pi

Base types b ∶∶= bool ∣ τ1
pc,H
ÐÐ→ τ2 ∣ R ∣ soft R Types τ ∶∶= bw ∣ 1

Values v,u ∶∶= x ∣ true ∣ false ∣ ∗ ∣ mS
∣ soft mS

∣ λ(x ∶ τ)[pc;H].e (∣ �p)

Terms e ∶∶= v ∣ v1 v2 ∣ if v1 then e2 else e3 ∣ {
ÐÐÐ⇀xi = vi}

S
∣ v.x ∣ v1.x ∶= v2

∣ soft e ∣ e1∥e2 ∣ exists v as x ∶ e1 else e2 ∣ let x = e1 in e2
∣ try e1 catch p∶ e2

A.2 Full small-step operational semantics for nonadversarial execution of λpersist

[APPLY] ⟨(λ(x ∶τ)[pc;H].e) v,M⟩ eÐ→ ⟨e{v/x},M⟩ [LET]
∀p. v ≠ �p

⟨let x = v in e,M⟩ eÐ→ ⟨e{v/x},M⟩
[IF-TRUE] ⟨if true then e1 else e2,M⟩ eÐ→ ⟨e1,M⟩ [IF-FALSE] ⟨if false then e1 else e2,M⟩ eÐ→ ⟨e2,M⟩

[CREATE]
m = newloc(M)

⟨{ÐÐÐ⇀xi = vi}S,M⟩ eÐ→ ⟨mS,M[mS ↦{ÐÐÐ⇀xi = vi}]⟩

[PARALLEL-
RESULT

] ⟨v1∥v2,M⟩ eÐ→ ⟨∗,M⟩ [SELECT]
M(mS) = {ÐÐÐ⇀xi = vi}

⟨mS.xc,M⟩ eÐ→ ⟨vc,M⟩

[ASSIGN]
M(mS) ≠ � ∀p. v ≠ �p

⟨mS.xc ∶= v,M⟩ eÐ→ ⟨∗,M[mS.xc ↦ v]⟩

[DANGLE-
SELECT

]
M(mS) = � p = persist(mS)

⟨mS.xc,M⟩ eÐ→ ⟨�p,M⟩
[DANGLE-

ASSIGN
]

M(mS) = � p = persist(mS)
⟨mS.xc ∶= v,M⟩ eÐ→ ⟨�p,M⟩

[EXISTS-
TRUE

]
M(mS) ≠ �

⟨exists soft mS as x ∶ e1 else e2,M⟩ eÐ→ ⟨e1{mS/x},M⟩

[EXISTS-
FALSE

]
M(mS) = �

⟨exists soft mS as x ∶ e1 else e2,M⟩ eÐ→ ⟨e2,M⟩

[ EVAL-
CONTEXT

]
⟨e,M⟩ eÐ→ ⟨e′,M′⟩

⟨E[e],M⟩ eÐ→ ⟨E[e′],M′⟩
[FAIL-

PROP
] ⟨F [�p] ,M⟩ eÐ→ ⟨�p,M⟩

E ∶∶= soft [ ⋅] ∣ let x = [⋅] in e ∣ [ ⋅ ]∥e ∣ e∥[⋅] ∣ try [ ⋅] catch p∶ e
F ∶∶= soft [ ⋅] ∣ let x = [⋅] in e

[ SOFT-
SELECT

]
⟨mS.xc,M⟩ eÐ→ ⟨v,M⟩

⟨(soft mS).xc,M⟩ eÐ→ ⟨v,M⟩
[ SOFT-

ASSIGN
]

⟨mS.xc ∶= v,M⟩ eÐ→ ⟨v′,M′⟩
⟨(soft mS).xc ∶= v,M⟩ eÐ→ ⟨v′,M′⟩

[TRY-VAL]
∀p′. v ≠ �p′

⟨try v catch p∶ e,M⟩ eÐ→ ⟨v,M⟩
[ TRY-

CATCH
]

p ≼ p′

⟨try �p′ catch p∶ e,M⟩ eÐ→ ⟨e,M⟩

[TRY-ESC]
p /≼ p′

⟨try �p′ catch p∶ e,M⟩ eÐ→ ⟨�p′ ,M⟩

[PROG-STEP]
⟨e,M⟩ eÐ→ ⟨e′,M′⟩
⟨e,M⟩ → ⟨e′,M′⟩

[GC]
gc(G,⟨e,M⟩)

⟨e,M⟩ → ⟨e,M[G↦�]⟩
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A.3 Full subtyping rules for λpersist

[S1]
n > m

⊢ {x1 ∶τ1, . . . ,xn ∶τn}r ≤ {x1 ∶τ1, . . . ,xm ∶τm}r
[S2]

⊢ R1 ≤ R2

⊢ soft R1 ≤ soft R2
[S3]

⊢ b1 ≤ b2
⊢ w2 ≼ w1

⊢ (b1)w1 ≤ (b2)w2

[S4]

⊢ τ2 ≤ τ1 ⊢ τ
′
1 ≤ τ

′
2

⊢ pc1 ≼ pc2 ⊢H2 ≼H1

⊢ τ1
pc1,,H1
ÐÐÐÐ→ τ

′
1 ≤ τ2

pc2,,H2
ÐÐÐÐ→ τ

′
2

[S5]
⊢ a+1 ≼ a+2 ⊢ a−2 ≼ a−1 ⊢ p2 ≼ p1

⊢ {
ÐÐ⇀xi ∶ τi}(a+1 ,a

−
1 ,p1)

≤ {
ÐÐ⇀xi ∶ τi}(a+2 ,a

−
2 ,p2)

A.4 Full typing rules for λpersist

[T-BOOL]
b ∈ {true, false}

Γ;pc;H⊢ b ∶ bool⊺,⊺
[T-UNIT] Γ;pc;H⊢ ∗ ∶ 1,⊺ [T-VAR]

Γ(x) = τ

Γ;pc;H⊢ x ∶ τ,⊺

[T-BOTTOM]
p ≠ ⊺ ⊢H ≼ p

Γ;pc;H⊢ �p ∶ τ, p
[T-LOC]

⊢wf S ∶ rectype S = {ÐÐ⇀xi ∶ τi}(a,p)
Γ;pc;H⊢mS ∶ ({ÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺

[T-PARALLEL]
Γ;pc;⊺ ⊢ ei ∶ τi,⊺ (∀i)

Γ;pc;H⊢ e1∥e2 ∶ 1,⊺
[T-SOFT]

Γ;pc;H⊢ e ∶ Rw,X
Γ;pc;H⊢ soft e ∶ (soft R)w,X

[T-IF]

Γ;pc;H⊢ v ∶ boolw,⊺
Γ;pc⊓w;H⊢ ei ∶ τ,Xi

(∀i) ⊢ auth+(τ) ≼ pc⊓w

Γ;pc;H⊢ if v then e1 else e2 ∶ τ⊓w,X1 ⊓X2

[T-ABS]
Γ,x ∶τ′;pc′;H′ ⊢ e ∶ τ,H′ ⊢wf (τ

′ pc′,H′
ÐÐÐ→ τ)⊺ ∶ type ⊢ pc′ ≼ pc

Γ;pc;H⊢ λ(x ∶τ′)[pc′;H′].e ∶ (τ
′ pc′,H′
ÐÐÐ→ τ)⊺,⊺

[T-APP]

Γ;pc;H⊢ v1 ∶ (τ
′ pc′,H′
ÐÐÐ→ τ)w,⊺ Γ;pc;H⊢ v2 ∶ τ′,⊺

⊢ pc′ ≼ pc⊓w ⊢H ≼H′

Γ;pc;H⊢ v1 v2 ∶ τ⊓w,H′

[T-RECORD]

⊢wf S ∶ rectype S = {ÐÐ⇀xi ∶ τi}(a,p) Γ;pc;H⊢ vi ∶ τ′i ,⊺ (∀i)

⊢ τ
′
i ≤ τi

(∀i) ⊢ auth+(τ
′
i) ≼ pc (∀i) ⊢ integ(τi) ≼ pc (∀i) ⊢ p ≼ pc

Γ;pc;H⊢ {ÐÐÐ⇀xi = vi}S ∶ ({ÐÐ⇀xi ∶ τi}(a,a,p))⊺,⊺

[T-SELECT]
Γ;pc;H⊢ v ∶ ({ÐÐ⇀xi ∶ τi}(a+ ,a−,p))w,⊺ ⊢ a+ ≼ pc w′ = w⊓ p ⊢H ≼ p

Γ;pc;H⊢ v.xc ∶ τc ⊓w′, p

[T-ASSIGN]

Γ;pc;H⊢ v1 ∶ ({ÐÐ⇀xi ∶ τi}(a+ ,a− ,p))w,⊺ ⊢ a+ ≼ pc Γ;pc;H⊢ v2 ∶ τ,⊺
⊢ τ⊓pc⊓w ≤ τc ⊢ auth+(τ) ≼ pc⊓w ⊢H ≼ p

Γ;pc;H⊢ v1.xc ∶= v2 ∶ 1, p

[T-SOFT-
SELECT

]

Γ;pc;H⊢ v ∶ (soft {ÐÐ⇀xi ∶ τi}(a+ ,a− ,p))w,⊺ ⊢ auth+(τc) ≼ pc
w′ = w⊓a− ⊓ p ⊢H ≼ p

Γ;pc;H⊢ v.xc ∶ τc ⊓w′, p

[T-SOFT-
ASSIGN

]

Γ;pc;H⊢ v1 ∶ (soft {ÐÐ⇀xi ∶ τi}(a+ ,a− ,p))w,⊺ Γ;pc;H⊢ v2 ∶ τ,⊺
⊢ τ⊓pc⊓w ≤ τc ⊢ auth+(τ) ≼ pc⊓w ⊢H ≼ p

Γ;pc;H⊢ v1.xc ∶= v2 ∶ 1, p

[T-EXISTS]

Γ;pc;H⊢ v ∶ (soft {ÐÐ⇀xi ∶ τi}r)w,⊺ ⊢ auth+(r) ≼ pc⊓w
w′ = auth−(r)⊓persist(r)⊓w Γ,x ∶({ÐÐ⇀xi ∶ τi}r)w;pc⊓w′;H⊢ e1 ∶ τ,X1

Γ;pc⊓w′;H⊢ e2 ∶ τ,X2 ⊢ auth+(τ) ≼ pc⊓w′

Γ;pc;H⊢ exists v as x ∶ e1 else e2 ∶ τ⊓w′,X1 ⊓X2

[T-TRY]

Γ;pc;H, p ⊢ e1 ∶ τ,X1 w = ⊓
p′∈X1

(p⊔ p′)

Γ;pc⊓w⊓ integ(τ);H⊢ e2 ∶ τ,X2 ⊢ auth+(τ) ≼ pc

Γ;pc;H⊢ try e1 catch p∶ e2 ∶ τ⊓w,(X1/p)⊓X2

[T-LET]

Γ;pc;H⊢ e1 ∶ τ′,X1 ⊢ auth+(τ
′) ≼ pc w = (⊓X1)⊓ integ(τ

′)
pc′ = pc⊓w Γ,x ∶τ′;pc′;H⊢ e2 ∶ τ,X2 ⊢ auth+(τ) ≼ pc′

Γ;pc;H⊢ let x = e1 in e2 ∶ τ⊓w,X1 ⊓X2

[T-SUBSUME]
Γ;pc;H⊢ e ∶ τ′,X ′ ⊢ τ

′ ≤ τ ⊢H ≼X ⊢X ≼X ′

Γ;pc;H⊢ e ∶ τ,X
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