JMatch: Java plus Pattern Matching

Jed Liu Andrew C. Myers
Computer Science Department
Cornell University

Abstract e convenient run-time type discrimination without casts
(for example, Modula-3'sypecase [Nel91])
The JMatch Ignguage extends_ Java V\'r_tEkTabIe ai_astrac'g e deep pattern matching allows concise, read-
pattern matchlng_pattern matching that is Compat_lble Wlth able deconstruction of complex data structures
the da}ta abstracthn features of Java and makes iteration ab- (as in ML [MTH90], Haskell [Jon99] and Cy-
stractions convenient. JMatch has ML-style deep pattern clone [JMG"02].) .
matching, but patterns can be abstract; they are not tied to o
algebraic data constructors. A single JMatch method may ® Multiple return values
be used in several modes; modes may share a single imple- o views [Wad87]
mentation as a boolean formula. Modal abstraction simpli-
fies specification and implementation of abstract data types.
This paper describes the JMatch language and its implemen- gMatch exploits two key ideasnodal abstractiorandin-
tation. vertible computationModal abstraction simplifies trspec-
ification (and use) of abstractions; invertible computation
) simplifies theimplementatiorof abstractions.
1 Introduction JMatch constructors and methods may be modal abstrac-
tions: operations that support multiplaodes[SHC96].
Object-oriented languages have become a dominant pro-Modes correspond to different directions of computation,
gramming paradigm, yet they still lack features considered where the ordinary direction of computation is the “forward”
useful in other languages. Functional languages offer ex- mode, but backward modes may exist that compute some or
pressive pattern matching. Logic programming languagesall of a method’s arguments using an expected result. Pattern
provide powerful mechanisms for iteration and backtrack- matching uses a backward mode. A mode may specify that
ing. However, these useful features interact poorly with the there can be multiple values for the method outputs; these
data abstraction mechanisms central to object-oriented lan-can be easily iterated over in a predictable order. Modal ab-
guages. Thus, expressing some computations is awkward irstraction simplifies the specification and use of abstract data
object-oriented languages. type (ADT) interfaces, because where an ADT would ordi-
In this technical report, we present the design and imple- narily have several distinct but related operations, in JMatch
mentation of JMatch, a new object-oriented language thatit is often natural to have a single operation with multiple
extends Java [GJSBOO0] with support fiberable abstract modes.
pattern matching-a mechanism for pattern matching thatis ~ The other key idea behind JMatch is invertible computa-
compatible with the data abstraction features of Java and thation. Computations may be described by boolean formulas
makes iteration abstractions more convenient. This mecha-that express the relationship among method inputs and out-
nism subsumes several important language features: puts. Thus, a single formula may implement multiple modes;
the JMatch compiler automatically decides for each mode
e convenient use and implementation of iteration ab- how to generate the outputs of that mode from the inputs.
stractions (as in CLU|[I£81], ICON [GHK81], and Each mode corresponds to a different direction of evaluation.
Sather[[MOSS96].) Having a single implementation helps ensure that the modes

implement the abstraction in a consistent manner, satisfying
This research was supported in part by DARPA Contract and F30602-99-1- expected eguatio ; ;

0533, monitored by USAF Rome Laboratory, by ONR Grant NO0014-01-1- ph . d nal rela.tlonshlps' . .
0968, and by an Alfred P. Sloan Research Fellowship. The U.S. Government These ideas appear In various |Og|C programming lan-

is authorized to reproduce and distribute reprints for Government purposes,guages, but it is a challenge to integrate these ideas into
notwithstanding any copyright annotation thereon. The views and conclu- an object-oriented language in a natural way that enforces

sions contained herein are those of the authors and should not be interprete(aata abstraction, preserves backwards compatibility, and per-
as necessarily representing the official policies or endorsement, either ex- ! Y,

pressed or implied, of the Defense Advanced Research Projects AgencyMits an efﬁc_ient impleme_ntation. JMatqh is not a genergl-
(DARPA), the Air Force Research Laboratory, or the U.S. Government. purpose logic-programming language; it does not provide

e patterns usable as first-class vallies [PGPN96, FB97]

the full power of unification over logic variables. This choice satisfying assignment, an exception is raised. To prevent an
facilitates an efficient implementation. However, JMatch exception, anif statement may be used instead. The con-
does provide more expressive pattern matching than logic-ditional may be any formula with at most one solution. If
programming, along with modal abstractions that are first- there is a satisfying assignment, it is in scope in the “then”
class values (objects). clause; if there is no satisfying assignment, the “else” clause

Although JMatch extends Java, little in this technical re- is executed but the declared variables are not in scope. For
port is specific to Java. The ideas in JMatch could easily be example, the following code assign$o an array index such
applied to other garbage-collected object-oriented languageghata[y] is nonzero (theingle restricts it to the first such
such as C#[Mic01] or Modula-3 [Nel91]. array index), or to-1 if there is no such index:

A prototype compiler for JMatch is available for down-
load. It is built using the Polyglot extensible Java com-

. . int y;

b4 -to-
t)llerflre:mew(:rkJ[NCMOA_],Whlch supports source-to-source ¢ (single(alint i] '= 0)) y = i;
ranslation into Java. else y = -1;

This technical report is an expanded version of an ear-
lier paper, including more examples and a more detailed de- _)) N
scription of the syntax and semantics of JMatch. The rest A formula may contain free variables in addition to the
of the technical report is structured as follows. Secfipn 2 Variables it declares. The formula expresses a relation among
provides an overview of the JMatch programming language. its various variables; in general it can be evaluated in sev-
Sectior[B gives examples of common programming idioms eral modes. For a given mode of evaluation these variables
that JMatch supports clearly and concisely. Sedfion 4 de- '€ eitherknownsor unknowns In the forward mode all
scribes static checking of JMatch, including type checking, variables, including bound variables, are knowns, and the
multiplicity checking, and static mode selection. Secfipn 5 formula is evaluated as a boolean expression. In backward
describes the implementation of the prototype compiler. Sec-modes, some variables are unknowns and satisfying assign-
tion [§ discusses related work. Sectidn 7 summarizes andments are sought for them. If JMatch can construct an al-
concludes with a discussion of useful extensions to JMatch. 9orithm to find satisfying assignments given a particular set

Appendice$ AT give a semantics for JMatch as a trans- of knowns, the formula isolvablein that mode. A formula

lation to Java. This semantics includes supportriterrupt- with no satisfying assignments is considered solvable as long
ible iteratorswhich is not described in this technical report, @S JMatch can construct an algorithm to determine this.
though it is described elsewhefe [LM05]. The specific con- For example, the formula[i] == 0 is solvable if the
structs include interrupts and interrupt handlers. variablei is an unknown, but not if the variabkeis an un-

known. The modes of the array index operaldr do not
. include any that solve for the array, because those modes
2 Overview of JIMatch would be largely useless (and inefficient).
Some formulas have multiple satisfying assignments; the
JMatch provides convenient specification and implementa- jpatch foreach statement can be used to iterate through

tion of computations that may be evaluated in more than onéthese assignments. For example, the following code adds the
direction, by extending expressiongtomulasandpatterns indices of all the non-zero elements of an array:
Named abstractions can be defined for formulas and pat-

terns; these abstractions are calfgddicate method9at-

tern methodsandpattern constructorsJMatch extends the foreach(alint 1] != 0) n += i;

meaning of some existing Java statements and expressions,

and adds some new forms. It is backwards compatible with In formulas, the single equals sigms)(is overloaded

Java. to mean equality rather than assignment, while preserving
backwards compatibility with Java. The symbelcorre-
21 Formulas sponds to semantic equality in Java (that is, #@als

method of clas@bject). Formulas may use either pointer

Syntactically, a JMatch formula is similar to a Java expres- equality €=) or semantic equality=); the difference be-
sion of boolean type, but where a Java expression wouldtween the two is observable only when an equation is evalu-
permit a subexpression of ty@g, a formula may include ated inforward mode, where the Ja¢uals method is used
a variable declaration with tygB. For example, the expres- to evaluate=. Otherwise an equation is satisfied by mak-
sion2 + int x == 5 is a formula that is satisfied when ing one side of the equation pointer-equal to the other—and
is bound to3. therefore also semantically equal. Because semantic equal-

JMatch has aet statement that tries to satisfy a formula, ity is usually the right choice for JMatch programs, concise
binding new variables as necessary. For example, the statesyntax is important. The other Java meanings for the symbol
mentlet 2 + int x == 5; causex to be bound t® in = are initialization and assignment, which can be thought of
subsequent code (unless it is later reassigned). If there is naas ways to satisfy an equation.

2.2 Patterns public class List implements Collection {
Object head;

A pattern is a Java expression of non-boolean type except ~ List tail;

that it may contain variable declarations, just like a formula. public List(Object h, List t)
In its forward mode, in which all its variables are knowns, returns(h, t) (

a pattern is evaluated directly as the corresponding Java ex- head = h && tail =t
pression. In its backward modes, the value of the pattern is)

a known, and this value is used to reconstruct some or all of
the variables used in the pattern. In the example above, thet
subexpressior2 + int x is a pattern with typeint, and
given that its value is known to e JMatch can determine

x = 3. Inversion of addition is possible because the addition
operator supports the necessary computational mode; not al
binary operators support this mode. Another pattern is the
expressiora[int i]. Given a valuer to match against, this
pattern iterates over the arrayinding all indicesi such that

v = a[i]. There may be many assignments that make a pat-
tern equal to the matched value. When JMatch knows how to
find such assignments, the pattermiatchablén that mode.

A patternp is matchable if the equatign= v is solvable for

any valuev.

This constructor differs in two ways from the correspond-
ing Java constructor whose body would refigtad = h;
pail = t; }. First, the mode clausgeturns (h,t) indi-
cates that in addition to the implicit forward mode in which
the constructor makes a new object, the constructor also sup-
ports a mode in which the result object is a known and the
arguments andt are unknowns. It is this backward mode
that is used for pattern matching. Second, the body of the
constructor is a simple formula (surrounded by parentheses
rather than by braces) that implements both modes at once.
Satisfying assignments teead andtail will build the ob-
ject; satisfying assignments hoandt will deconstruct it.
The Javaswitch statement is extended to support gen- For example, this pattern constructor can be applied in

eral pattern matching. Each of tkese arms of aswitch ways that will be familiar to ML programmers:
statement may provide a pattern; the first arm whose pattern
matches the tested value is executed. List 1;

The simplest pattern is a variable name. If the type "
checker cannot statically determine that the value being S¥itch (1) {
matched against a variable has the same type, a dynamic type ~ ¢3¢ List(Integer x, _
test is inserted and the pattern is matched only if the test suc- List(Integer y, List rest)):

ceeds. Thus, aypecase statemen{[Nel91] can be concisely T
N default:

expressed asswitch statement:
}

Vehicle v; ... The switch statement extracts the first two elements of the

switch (v) { list into variablesk andy and executes the subsequent state-
case Car c: ... ments. The variableest is bound to the rest of the list. If
case Truck t: ... the list contains zero or one elements, de€ault case ex-
case Airplane a: ... ecutes with no additional variables in scope. Even for this

} simple example, the equivalent Java code is awkward and

less clear. In the code shown, the constructor invocations do
not use thewnew keyword; the use afiew is optional.
For the purpose of pattern matching there is no difference The List pattern constructor also matches against sub-
between a variable declaration and a variable by itself; how- classes ofList; in that case it inverts the construction of

ever, the first use of the variable must be a declaration. only theList part of the object.
Itis also possible to match several values simultaneously:

List 11, 12;
switch (11, 12) {
2.3 Pattern constructors case List(Integer x,
List(Integer y, List rest)),
One way to define new patterns [mttern constructors List(y, _):

which support conventional pattern matching, with some in- e
crease in expressiveness. For example, a simple linked list default:
(a“cons cell”, really) naturally accommodates a pattern con-

structor: }

The first case executes if the list has at least two elements, default, forward mode. A modeeturns(zq,...,T,),
and the head of list2 exists and is afinteger equal to the wherezq, ..., z, are argument variable names, declares a
second element afi. The remainder of2 is matched using mode that generates a satisfying assignment for the named
the wildcard pattern ‘. variables. A modeterates(zq,...,x,) means that the
In this example of a pattern constructor, the constructor method iterates over setof satisfying assignments to the
arguments and the fields correspond directly, but this neednamed variables.
not be the case. More complex formulas can be used to Invocations of predicate methods may appear in formulas.
implement views as proposed by Wadler [Wad87] (see Sec-The following code iterates over the Collectionfinding all
tion[3.3). elements that are lists whose first element is a green truck;
The example above implements the constructor using athe loop body executes once for each element, with the vari-
formula, but backwards compatibility is maintained; a con- ablet bound to thefruck object.

structor can be written using the usual Java syntax.
foreach (c.contains(List(Truck t, _)) &&

t.color() = GREEN)

2.4 Methods and modal abstraction System.out.println(t.model());

The language features described so far subsume ML pattern
matching, with the added power of invertible boolean for- 2.5 Implementing methods
mulas. JMatch goes further; pattern matching coexists with o))
abstract data types and subtyping, and it supports iteration. A linked listis a simple way to implement tf@1lection
Methods withboolean return type arepredicate meth- interface. ConS|de_r the linked I|s_t example again, where the
odsthat define a named abstraction for a boolean formula. contains method is no longer elided:
The forward mode of a predicate method expects that all ar-
guments are known and executes the method normally. InP
backward modes, satisfying assignments to some or all of
the method arguments are sought. Assuming that the vari-
ous method modes are implemented consistently, the corre-
sponding forward invocation using these satisfying assign-
ments would have the resuitue. }
Predicate methods with multiple modes can make ADT
specifications more concise. For example, in the Java Col- As with constructors, multiple modes of a method may be
lections framework th€ollection interface declares sep- jmplemented by a formula instead of a Java statement block.
arate methOdS fOf f|nd|ng a” elements and fOI’ CheCking if a Here' the formula imp'ements both modescoehtains. In
given object is an element: the forward mode there are no unknowns; in the backward
mode the only unknown is, as the clauseterates (o)
indicates.
In the backward mode, the disjunction signals the pres-

In any correct Java implementation, there is an equational €Nce of iteration. The two subformulas separated byle-

ublic class List implements Collection {
Object head; List tail;
public List(Object h, List t) returns(h, t)
public boolean contains(Object o) iterates(o) (
o = head || tail.contains(o)

)

boolean contains(Object o);
Iterator iterator();

relationship between the two operations: any objepto- fine two different ways to satisfy the formula; both will be
duced by the iterator object satisfiesmtains (x), and any ~ €xplored to find satisfying assignments éor

object satisfyingcontains (x) is eventually generated by The modes of a method may be implemented by sepa-
the iterator. When writing the specification f&s11ection, rate formulas or by ordinary Java statements, which is useful
the specifier must describe this relationship so implementersWhen no single boolean formula is solvable for all modes, or
can do their job correctly. it leads to inefficient code. For example, the following code

By contrast, a JMatch interface can describe both opera-Separately implements the two modesofitains:

tions with one declaration: public boolean contains(Object o) {

if (o.equals(head)) return true;
return tail.contains(o);
This declaration specifies two modes: an implicit forward } iterates(o) {

boolean contains(Object o) iterates(o);

mode in which membership is being tested for a particular o = head;
objecto, and a backward mode declared tyerates (o), yield;
which iterates over all contained objects. The equational re- foreach (tail.contains(Object tmp)) {
lationship is captured simply by the fact that these are modes 0 = tmp;
of the same method. yield;
An interface method signature may declare zero or more 3

additional modes that the method implements, beyond the}

For backward modes, results are returned from the methodclass List {

by theyield statement rather than leturn. Theyield Object head; List tail;

statement transfers control back to the iterating context, Static List append(List prefix, Object last)
passing the current values of the unknowns. While this code returns (prefix, last) (

is longer and no faster than the formula above, it is simpler prefix = null && // single element

than the code of the corresponding Java iterator object. The result = List(last, null)

reason is that iterator objects must capture the state of itera- ~ ©1se // multiple elements

tion so they can restart the iteration computation whenever a prefix = List(Object head, List ptail) &&
new value is requested. In this example, the state of the itera- result = List(head, append(ptail, last))

tion is implicitly captured by the position of theie1d state-)

ment and the local variables; restarting the iteration is auto- +

matic. In essence, iteration requires the expressive power oftist 1;

coroutines[[Con6d, £81,[GHK81]. Implementing iterator ~ switch(1) {

objects requires coding in continuation-passing style (CPS) ¢case List.append(List.append(_, Object ol),

to obtain this power [HFWE6], which is awkward and error- Object 02):

prone [MOSS96]. The JMatch implementation performs a

CPS conversion behind the scenes (see Sdction 5). +

26 Pattern methods Figure 2: Reversible list append

JMatch methods whose return type is not booleampatern

methodsvhose result may be matched against other values if As this example suggests, the rule for resolving method
the appropriate mode is implemented. Pattern methods pro_invocations is slightly different for JMatch. A non-static pat-
vide the ability to deconstruct values even more abstractly tern methodm of class7" can be invoked using the syn-
than pattern constructors do, because a pattern method detax 7.m, in which case the receiver of the method is the
clared in an interface can be implemented in different ways object being matched. JMatch has a pattern operator

in the classes that implement the interface. the pattern £ as) matches a value if boti#, and P

For example, many data structure libraries contain severalMatch it. A patterri”., () is syntactic sugar for the pattern
implementations of trees (e.g., binary search trees, red-black(T ¥ as y.m(O) wherey is fresh.
trees, AVL trees). When writing a generic tree-walking al- Within a pattern method there is a special variatdgult
gorithm it may be useful to pattern-match on tree nodes to that represents the result of the method call. Mode declara-
extract left and right children, perhaps deep in the tree. This tions may mentiorresult to indicate that the result of the
would not be possible in most languages with pattern match- method call is an unknown. In the default, forward mode the
ing (such as ML or Haskell) because patterns are built from only unknown is the variableéesult. During the method
constructors, and thus cannot apply to different types. An calls shown in Figurg]1, the variabtesult will be bound
abstract data type is implemented in these languages by hidto the same object as the method recenters. This need
ing the actual type of the ADT values; however, this prevents not be true if the pattern method is invoked on some object
any pattern matching from being performed on the ADT val- other than the result—which allows the receiver object to be
ues. Thus, pattern matching is typically incompatible with used as a first-class pattern. (The expressiars is always
data abstraction. a known in non-static methods.)

By contrast, in JMatch it is possible to declare pattern Figure[2 shows an example of a static pattern method;
methods in an interface such as these interface shown on append appends an element to the list in the forward di-
the left side of FigurE]1. As shown in the figure, these pattern rection but inverts this operation in the backward direction,
methods can then be used to match the structure of the treesplitting a list into its last element and a prefix list. In this
without knowledge of the actud@ree implementation being version ofList, empty lists are represented hyll. The
matched. append method is static so that it can be invoked on empty

An implementation of the pattern methodsde and lists. Theswitch statement shows that pattern matching can
empty for a red-black tree is shown on the right side of Fig- extract the last two elements of a list.
ure[1. Here there are two classes implementing red-black This example uses a disjunctive logical connectélese,
trees. For efficiency there is only one instance of the empty which behaves likel | except that the right-hand disjunct
class, calledtheEmptyTree. Thenode andempty pattern generates solutions only if the left-hand disjunct has not. An
methods are only intended to be invoked in the backwards else disjunction does not by itself generate multiple solu-
mode for pattern-matching purposes. Thus, the ordinary tions in backward modes; bo#ise and | | are short-circuit
forward mode is implemented by the unsatisfiable formula operators in the forward mode where the proposed solution
false. to the formula is already known.

class RedBlackNode implements Tree {
RedBlackNode 1f, rg;
A int color; //RED or BLACK
Object value;
Tree node(Tree left, Tree right)

A (false) //forward mode
a returns (left, right) (
left = 1f &&
right = r
interface Tree {) & &
Tree node(Tree left, Tree right, Object o) Tree empty() returns()
returns(left, right, o); (false) //both modes
Tree empty();
¥ }

class RedBlackEmpty implements Tree {
static Tree theEmptyTree = RedBlackEmpty();
Tree node(Tree left, Tree right)

switch (a) { returns (left, right)
case Tree.node(Tree.node(Tree b, (false) //both modes

Tree.node(Tree c,
Tree.empty())),

Tree a = ...;

Tree empty()

returns() (result = theEmptyTree)
Tree d):

(specification and use) (implementation)

Figure 1: Deep abstract pattern matching

This example also demonstrates reordering of conjunctsindex operatoff] supports new modes that are easy to spec-
in different modes. The algorithm for ordering conjuncts is ify if we consider the operator on the tygé] (array ofT)
simple: JMatch solves one conjunct at a time, and always as a method namesberator [] after the C++ idiom:
picks the leftmost solvable conjunct to work on. This rule
makes the order of evaluation easy to predict, which is im- static T operator[](T[] array, int index)
portant if conjuncts have side effects. While JMatch tends iterates(index, result)
to encourage a functional programming style, it does not at-
tempt to guarantee that formulas are free of side-effects, be-That is, an array has the ability to automatically iterate over
cause side-effects are often useful. its indices and provide the associated elements. Note that

In this example, in the backward mode the first conjunct other than the convenient syntax of array indexing and the
is not initially solvable, so the conjuncts are evaluated in re- type parameterization that arrays provide, there is no special
verse order—in the multiple-element casesult is first magic here; it is easy to write code using thield state-
broken into its parts, then the prefix of its tail is extracted ment to implement this signature, as well as for the other
(recursively using theppend method), and finally the new built-in extensions.

prefix is constructed. The arithmetic operations and - are also able to solve
Pattern methods and pattern constructors obey similarfor either of their arguments given the result. In Java, the op-

rules; the main difference is that whersult is an un- erator+ also concatenates strings. In JMatch the concatena-

known in a pattern constructor, the variatlesult is au- tion can be inverted to match prefixes or suffixes; all possible

tomatically bound to a new object of the appropriate type, matching prefix/suffix pairs can also be iterated over.

and its fields are exposed as variables to be solved. The list- Within formulas, relational expressions are extended to
reversal example shows that pattern methods can construcsupport a chain of relational comparisons. Certain integer
and deconstruct objects too. inequalities are treated as built-in iterators: formulas of the
form (a1 p1 az p2 ... pp—1 ay), Wherea; anda,, are solv-
able, and all of the; are eithex or <= (or else all> or >=).
These formulas are solved by iteration over the appropriate
Many of the built-in Java operators are extended in JMatch range of integers between anda,,. If < or <=, the iteration

to support additional modes. As mentioned earlier, the array ascends, otherwise it descends. For example, the following

2.7 Built-in patterns

two statements are equivalent except that the first evaluatesass Node extends RBTree {

a.length only once:

foreach (0 <= int i < a.length) { ... }
for (int 1 = 0; i < a.length; i++) { ... }

2.8 lterator objects

Java programmers are accustomed to performing iterations

using objects that implement thegerator interface. An
Iterator is an object that acts like an input stream, deliv-
ering the next object in the iteration whenever szt ()
method is called. ThaasNext () method can be used to
test whether there is a next object.

Iterator objects are usually unnecessary in JMatch, but
they are easy to create. Any formufacan be converted into
a corresponding iterator object using the special expression
syntaxiterate C'(F). Given a formula with unknowns
x1,...,T,, the expression produces an iterator object that
can be used to iterate over the possible solutions to the for-
mula. Each time theext () method of the iterator is called,

a container object of clags is returned that has public fields
namedz,, ..., z, bound to the corresponding solution val-
ues.

Iterator objects in Java sometimes implementeaove
method that removes the current element from the collec-
tion. lterators with the ability to remove elements can be
implemented by returning the (abstract) context in which the

element occurs. This approach complicates the implementa-

tion of the iterator and changes its signature. Better support
for such iterators remains future work.

2.9 Exceptions

The implementation of forward modes by boolean formulas
raises the question of what value is returned when the for-
mula is unsatisfiable. ThoSuchElementException ex-
ception is raised in that case.

Methods implemented as formulas do not have the ability
to catch exceptions raised during their evaluation; a raised
exception propagates out from the formula to the context us-
ing it. If there is a need to catch exceptions, the method must
be implemented as a statement block instead.

In accordance with the expectations of Java programmers,
exceptions raised in the body offareach iteration cannot
be intercepted by the code of the predicate being tested.

3 Examples

A few more detailed examples will suggest the added expres-
sive power of JMatch.
3.1 Functional red-black trees

A good example of the power of pattern matching is the code
for recursively balancing a red-black tree on insertion. Cor-

int value;
int color; // RED or BLACK
RBTree left, right;

public RBTree insert(int x) {
let Node(_,int v,RBTree 1,RBTree r)
return new Node(BLACK, v, 1, r)
}
Node ins(int x) { //internal insert
if (x == value) return this;
if (x < value) return balance(color, value,
left.ins(x), right);
else return balance(color, value,
left, right.ins(x));

ins(x);

}
protected static Node
balance(int color, int value,
RBTree left, RBTree right) {
if (color == BLACK) {
switch (value, left, right) {
case int z,
Node (RED, int y,
Node (RED, int x,RBTree a,RBTree b),
RBTree c),
RBTree d:
case z, Node(RED,x,a,Node(RED,y,b,c)), d:
case x, ¢, Node(RED,z,Node(RED,y,a,b),d):
case x, a, Node(RED,y,b,Node(RED,z,c,d)):
return Node(RED,y,Node(BLACK,x,a,b),
Node (BLACK,z,c,d));
}
}
return new Node(color, value, left, right);

}

Figure 3: Balancing red-black trees

men et al.[[CLRI0D] present pseudocode for red-black tree
insertion that takes 31 lines of code yet gives only two of the
four cases necessary. Okasaki [Oka98a] shows that for func-
tional red-black trees, pattern matching can reduce the code
size considerably. The same code can be written in JMatch
about as concisely. Figufé 3 shows the key code that bal-
ances the tree. The four cases of the red-black rotation are
handled by four cases of tharitch statement that share a
single return statement, which is permitted because they

solve for the same variables{d, x—=).

3.2 Binary search tree membership

Earlier we saw that for lists, both modes of thentains
method could be implemented as a single, concise formula.
The same is true for red-black trees:

static String sexp(String rest, Object AST)

public boolean contains(int x) iterates(x) (
returns (rest, AST) (

left !'= null && x < value && left.contains(x) ||
x = value || String s = stripWS(result) && (
right != null && x > value && right.contains(x) 1S = atom(rest, String name) && name = AST
) else
s = "(" + list(")"+rest, List 1) && 1 = AST
In its forward mode, this code implements the usual)
O(logn) binary search for the element. In its backward)
mode, it iterates over the elements of the red-black tree instatic String list(String rest, List AST)
ascending order, and the tests< value andx > value returns(rest, AST) (

superfluously check the data-structure invariant. Automatic =~ String s = stripWS(result) && (
removal of such checks is future work. s.charAt(0) = ’)’ && s = rest &% AST = null

else
. s = sexp(list(rest, List 1), Object o) &&
3.3 Hash table membership AST = List(o, 1)

The hash table is another collection implementation that ben-

efits in JMatch. Here is theontains method, with three ¢ ¢ic String atom(String rest, String name)

modes implemented by a single formula: returns (rest, name) (
class HashMap { String s = stripWS(result) &&
HashBucket [] buckets; s = char ¢ + atom(rest, String suffix) &&

atomChar(c) &&
name = c + suffix

int size;

public boolean contains(Object key, Object value)
returns(value) iterates(key, value) (
int n = key.hashCode() ¥ size &&
HashBucket b = buckets[n] &&
b.contains(key, value)

) .
3 expressiong [McC60].

The code consists of three methods that correspond di-
In the forward mode, the code checks whether the \ocqy (o the grammar for s-expressions. In its back-

(key,value) binding is present in the hash table. In the seC-y 414 mode, the methodexp parses an s-expression that
ond mode, a key is provided and a value efficiently located if jg 5 prefix of the result string it is matched against.

available. The final mode iterates over all (key,value) pairsin e parsed s-expression is returnedABT, and the un-
the table. The hash table has chained buckizishBucket) consumed suffix of the string is left imest. The

that implementontains similarly to the earlieL.ist im- other two methods operate similarly but parse lists of s-
plementation. In the final, iterative mode, the built-in array expressions and atoms, respectively. For example, solv-
iterator generates the individual bucketsthe checkn = ing "(a (b ¢)) d" = sexp(String r, Object AST)

hash(key) becomes a final consistency check on the data (oqits inr being bound ta andAST being bound to the list
structure, because it cannot be evaluated uetilis known. ["a", ["b", "c"1] (the latter is not legal Java syntax).

The signature of the methdthshBucket . contains is This code relies on two elided methods;ripwWs and
the same as the signaturetshiap. contains, Which is ¢ 1« o \which respectively strip leading white space and
hot surprising because they both implement maps. The Var'report whether a character can be part of an atom. Note the

lous modes oHashMap. contains use the corresponding o;engjve use of pattern matching on string concatenation.
modes ofHashBucket.contains and different modes of

the built-in array index operator. This coding style is typical
in JMatch. 3.5 Simulating views
A comparison to the standard Java collection class
HashMap [GJSBO0] suggests that modal abstraction can sub- Wadler has proposed views [Wad87] as a mechanism for rec-
stantially simplify class signatures. Thentains method onciling data abstraction and pattern matching. For example,

Figure 4: Parsing s-expressions

provides the functionality of methodget, iterator, he shows that the abstract data type of Peano natural num-
containsKey, containsValue, and to a lesser extent the bers can be implemented using integers, yet still provide the
methodseySet andvalues. ability to pattern-match on its values. Figjre 5 shows the

equivalent JMatch code. Wadler also gives an example of
a view of lists that corresponds to the modes of the method
append shown in Sectiop 2]6.

Abstract pattern matching can make parsing convenient, as In both cases, the JMatch version of the code offers the
shown in the code of Figufg 4, which parses Lisp-style S- advantage that the forward and backwards directions of the

3.4 Parsing

class Peano {
private int n;
private Peano(int m) returns(m) (m =n)
public Peano succ(Peano pred) returns(pred) (
pred = Peano(int m) && result = Peano(m+1)

ConstructorDeclaratorRest —
FormalParameters (Throws | Traps)* ConstructorBody
ConstructorBody — [DefaultImpl} (Impl)*
(but not empty)

)
public Peano zero() returns() (result = Peano(0)) 4.1.2 Statement extensions

A few new statements are added:

Figure 5: Peano natural numbers ADT Statement — ...
| foreach (Formula) Statement

| let Formula ;
view are implemented by a single formula, ensuring consis- | yield; .
tency. In the views version of this code, sepaiatandout | °°nld {S((F Orm’”a}) Statement)
functions must be defined and it is up to the programmer to [e1se Staement]

. | raise Expression ;
ensure that they are inverses. . .
| resume (break | continue | yield)

(TrapClause)*
TrapClause — trap (FormalParameter) Block

4 Syntax and static semantics

. . Thelet andforeach statements were described in Sec-
4.1 JMatch syntactic extensions tion[d. Thecond statement (from LISF_[Ste90]), is similar
to if except that it supports multiple conditions. Theise
andresume Statements are used for raising and handling in-
terrupts.
The syntax of some other Java statements is modified:

The following grammar productions describe how the
Java 1.4 grammari [GJSBOO0] is extended in a backwards-
compatible way to become the JMatch grammar. The no-
tation is EBNF: large brackets are used to indicate optional
terminals or nonterminals, large parentheses are used as
grouping structure, and Kleene star is used to indicate zero ¢ .
witchStatement —

or more repetitions. . . switch (Expression, ..., Expression) SwitchBlock
The grammar described here includes syntax for SUpport- gwitchLabel —s

a .
IfStatement — if (Formula) Statement [else Statement |

ing interruptible iterators [LMOS5]. case Expression, ..., Expression where Formula :
| default :
. . L . e)T
4.1.1 Method and constructor declarations Catches — (CatchClause | TrapClause)
CatchClause — . ..
Java method declaration headers are extended to include in- | catch (trap FormalParameter) Block

terrupt and trap-exception declarations:

MethodDeclaratorRest — The if statement is extended to allow any formula as the
FormalParameters [[1| (Throws | Traps)* conditional. The real grammar is more complicated because
(MethodBody | ;) of the usual dangling-else problem.
InterfaceMethodDeclaratorRest — In aswitch statement, the correspondingse labels can
FormalParameters [[1] (Throws | Traps)" ; be arbitrary patterns, with an optional side condition speci-

Throws — throws QualifiedIldentifierList

fi h I .
Traps — traps Qualifiedidentifier | : QualifiedldentifierList | ed by awhere clause

The try statement is extended to include declarators for

Method declaration bodies are extended to include mode Nt€Tupt and trap-exception handlers.

declarations and implementations:
4.1.3 Expression extensions

MethodBody —))
[Defaultimpl | (Impl)* [AbstractModes ; | Formulas are boolean expressions, extended witlelke
(but not empty) operator.
DefaultImpl — ImplBody
Impl — (Mode)* ImplBody Formula — ConditionalOrExpression
ImplBody — Block | (Formula) ConditionalOrExpression — . ..
AbstractModes — (Mode)* | ConditionalOrExpression else
Mode — Conditional AndExpression

(iterates | returns) ([Identifier, ..., Identifier |)
Conjunction expressions are extended to contairex-

Similar extensions exist for Java constructor declarations: pressiondor specifying exception and interrupt handlers.

Conditional AndExpression — TryExpression with the syntax?’.m, it is a pattern method invocation of
| Conditional AndExpression TryExpression methodm of typeT'. It would be appealing to avoid naming
T explicitly but this would require type inference.

TryExpression — InclusiveOrExpression
| InclusiveOrExpression (CatchClause | TrapClause)" 4.2.1 Mode selection

Expressions are extended to allow the declarations of vari- For built-in and user-defined predicate and pattern methods,
ables to solve for, as well as some other new expressionthe compiler must select the appropriate mode for each use

forms: in aformula or pattern. A pattern is solvable if a value can be
found for the pattern, along with corresponding assignments
PostfixExpression — to the variables it declares, even in the absence of a value
to match against. If a value is needed to match against, the
| Type VariableDeclaratorld pattern is matchable.
| iterate Identifier (Formula) Mode selection puts patterns into a canonical form in
| single (Expression) which they can solved in left-to-right order. In canonical

- form, conjuncts occur in the order in which they are to be
solved. In addition, equality tests are ordered so that the pat-

The single construct can be used on formula or pattern tern on the left side is solvable and the right side is match-
to prevent more than one set of solutions; it turns a formula aP!€, using the solved value of the left side.

or pattern with multiple solutions into one with a single so- WWhen a pattern or formula is solved, it provides values
lution. for all unknown variables used by the formula. The only

As in ML [MTH90], the underscore_{) is a wildcard pat- exception to this occurs in the case of disjunctions, where
tern that can be matched against any value. values are provided only for those variables used in all arms

To avoid parentheses around most equality tests, JMatchOf the disjunction.

gives the operatot higher precedence tha or | |. This For constructor and method invocations, there may be
change requires juggling a few productions. Note that the more than one mode that permits solution of the pattern or
pattern operatoss shows up here. formula. The first step is to determine the setusfable
modes. A mode is usable if all the arguments provided to
StatementExpression — Assignment known formal parameters are solvable patterns.
| RelationalExpression Given the set of usable modes, the best mode is selected,
RelationalExpression — based on an ordering of modes. Each mode hasiléiplic-
RelationalExpression RelOp InstanceofExpression ity, which is eitherl (single) orx (multiple), depending on
RelOp— == | = [1= | <|>]<=|>= whether it has at most one solution or possibly many solu-

EqualityExpression — RelationalExpression
InstanceofExpression — ShiftExpression
| InstanceofExpression instanceof ReferenceType
| InstanceofExpression as ShiftExpression

tions (thereturns anditerates modes, respectively.)

A partial ordering of predicate modes is defined as fol-

lows. First an ordering on multiplicities is definedl: < x.

If modesM; (U;) and M, (Us) have respective multiplicities

. M, and M, and respective unknown sdt§ and U, then

4.2 Type checking My (Uy) < Ma(Us) iff My < M andU, C Us. From the
Like Java programs, JMatch programs are type-checked stat-S_UbSEI of the usable_modes tha_t are mini_mal in this order, the
ically. However, the introduction of modes creates new obli- first mode declared in the receiver type is selected. Usually
gations for static checking. Type checking JMatch expres- there is only one minimal usable mode, so declaration order
sions, including formulas and patterns, is little different from d0€s not mater.

regular Java type checking, since the types are the same in all

modes, and the forward mode corresponds to ordinary Javay > o Multiplicity checking

evaluation.

The interface and abstract class conformance rules in Javdn JMatch it is a static error to use a formula or pattern
are extended in a natural way to handle method modes:with multiple solutions when a single solution is expected,
to implement an interface or to extend an abstract class, abecause solutions might be silently discarded. Multiplicity
JMatch class must implement all the methods in all their checking ensures that a formula or pattern with multiplicity
modes, as declared in the interface or abstract class being: cannot be used in a context (such asidror let) where
implemented or extended. A method can add new modes toa single solution is expected. Thengle operator may be
those defined by the superclass. used to explicitly convert the multiplicity.

One change to type checking is in the treatment of pattern Usually, the multiplicity of a formula or pattern is simply
method invocations. When a non-static method is invoked the join of the multiplicities of its subformulas or subpat-

10

terns. Any formula, pattern, constructor, or method used in cass ITER extends jmatch.runtime.Iterator {

. R . T; $i; // unknowns
the forward direction is singular. Otherwise: T 2 / local variables
e Disjunctions have multiplicity. boolean peek() throws Throwable {
while (true) {
¢ Wildcard patterns have multiplicity. try {
switch($state$) {
e Thesingle of a formula or pattern has multiplicity. case 0: ...
case 1: ...
e Constructor, method and built-in operator invocations
have a multiplicity defined by the mode used. case N: ...
}
} catch (Throwable t) {
5 Implementation $thrown$ = t;
if (!findHandler()) throw t;
The JMatch compiler is built using the Polyglot compiler continue;
framework for Java language extensidns [NCMO02]. Polyglot Yri

boolean findHandler() {
while (true) {
switch($state$) {

supports both the definition of languages that extend Java
and their translation into Java.

case 0: ...
5.1 Translating JMatch to Java;.., case 1: ...
In the prototype implementation, JMatch is translated into case N: ...
Java by way of an intermediate language called Java }rry

which is the Java 1.4 language extended wiilke1d, try
...trap, andresume statements [LMO5] that can only be
used to implement iterator objects. Executing1d causes
the iterator to return control to the calling context. The itera-
tor object constructor and the methatisxt andhasNext

are automatically implemented in Jayay. Each subse-
guent invocation ohext on the iterator returns control to
the point just after the execution of the previoypseld
statement. Appendix]A provides this translation, which is
straightforwardly defined using a few mutually inductively
defined syntax-directed functions.

Figure 6: Output of the translation from Javaq

managed by the methaflindHandler: depending on the
current control state of the iterator and the type of the ex-
ception or interrupt to be handled, thetate$ variable is
updated to dispatch control to the appropriate handler.

The translation, given in AppendiX C, is essentially a con-
version to continuation-passing style.

. 5.3 Implementation status
5.2 Translating Java,;.,, to Java P

Most of the language described in this paper is imple-

Javg;..a code that does not contain theeld statementis mented in the current JMatch compiler prototype found at
translated as is. In iterator implementations,theld state- http://www.cs.cornell.edu/Projects/jmatch. Cer-

ment is eliminated by converting the iterator code into a state 5iny features of JMatch have not yet been implemented
machine. The form of code for an iterator clasgR thatre- hough their implementation has been designed. The reverse
turns variables:; is shown in Figur¢]6, which refers to the qges of the string concatenation operator are implemented

framework clasgmatch. runtime. Iterator givenin Ap- ip 3 yser-defined library but the operatosyntactic sugar is
pendiXB. _ _ not.
The code of the iterator, broken up infaeld-free frag- While the performance of the translated code is asymptot-

ments, appears within thesitch statement in the method jcq)ly acceptable, several easy optimizations would improve
peek. The variable$state$ explicitly captures the control 4q4e quality.

state of the iterator so it can be restarted by branching to

the appropriate case arm. Eagteld statement causes the

corresponding:ase arm to terminate by updating the vari- 6 Related work

able$state$ and returning to the caller. The translated code

can also jump among the variogsse arms by changing the Prolog is the best-known declarative logic programming lan-

value of$state$ and executing @ontinue. guage. It and many of its descendents have powerful unifi-
Handlers for exceptions, interrupts, and trap excep- cation in which a predicate can be applied to an expression

tions [LMOS] are similarly translated and appear in the containing unsolved variables. JMatch lacks this capability

switch statement in the methggkek. Handler dispatch is because it is not targeted specifically at logic programming

11

tasks; rather, it is intended to smoothly incorporate some ex- support objects.
pressive features of logic programming into a language sup- Several other languages have expressive iteration con-
porting data abstraction and imperative programming. structs. The language CLU_fi81] first introduced iter-

ML [MTH90] and Haskell [HIW92/ Jon99] are well- ators whose use and implementation are both convenient;
known functional programming languages that support pat- the yield statement of JMatch was inspired by CLU.
tern matching, though patterns are tightly bound to the con- ICON [GHK81] also has “generators” that can produce more
crete representation of the value being matched. Becausdhan one value. Implementation of ICON generators is simi-
pattern matching in these languages requires access to thé&ar to thatin CLU, although there are some convenient built-
concrete representation, it does not coexist well with the datain generators. ICON supports imperative programming and
abstraction mechanisms of these languages. However, an adimited backtracking across statements. Sather provides it-
vantage of concrete pattern matching is the simplicity of an- erator abstractions [MOSS96] with some extensions to the
alyzing exhaustivenesshat is, showing that some arm of a CLU model. None of these languages have pattern match-
switch statement will match. ing.

Pattern matching has been of continuing interest to the Juno-2 [NH97] is a constraint-based rendering language
Haskell community. Wadler's views$ [Wad87] support pat- with both imperative_and Iogic—programming _features; i.t can
tern matching for abstract data types. Views correspond toSolve formulas that mpluQe n_umencal equations; predicates
JMatch constructors, but require the explicit definition of a &ré expanded at application time, so predicate arguments are
bijection between the abstract view and the concrete repre-not required to be ground values. It does not support data
sentation. While bijections can be defined in JMatch, often abstraction.
they can be generated automatically from a boolean formula. Pizza also extends Java with support for datatypes and
Views do not provide iteration. ML-style pattern matching [OW97], by allowing a class to be

Burton and Camerofi [BC93] have also extended the views MPlemented as an algebraic datatype. Because the datatype

approach with a focus on improving equational reasoning. is not exposed outside the class, this design does not permit
Fahndrich and Boyland [FB97] introduced first-class pat-

abstract pattern matching; it does allow a collection of re-
tern abstractions for Haskell, but do not address the datalated implementations to be conveniently packaged together
abstraction problem. Palao Gonstanza et al. [PGPN96] de—With some code sharing and pattern matching. Forax and
scribe first-class patterns for Haskell that work with data

Roussel have also proposed a Java extension for simple pat-
abstraction, but are not statically checkable. Okasaki hast®™ matching based on reflection [FR99].

proposed integrating views into Standard ML [Okagsb]. Emst et al. have developed predicate dispatch-
Tullsen [Tul00] shows how to use combinators to construct ing [EKCO€], another way to add pattern matching to an

first-class patterns that can be used with data abstraction °Piect-oriented language. In their language, boolean formu-

Like views, these proposals do not provide iterative patterns, 1S control the dispatch mechanism, which allows some en-
modal abstraction, or invertible computation. coding of some pattern-matching idioms although deep pat-

A few languages have been proposed to intearate func-tem matching is not supported. This approach is comple-
. guag . Propose: 9 mentary to JMatch, in which object dispatch is orthogonal to
tional programming and logic programmirig [Hanh97, L1699,

CLO0]. The focus in that work is on allowing partially in- pattern matching. Their language has predicate abstractions

. that can implement a single new view of an object, but unlike
stantiated values to be used as arguments, rather than on dat . . ;)
. atch, it does not unify predicates and methods. Predicates
abstraction. SRS . . -
have some limitations: they may not be recursive or iterative
In the language Alma-0, Apt et all_ J[ABPS98] have

)) X - and do not support modal abstraction or invertible computa-
augmented Modula-2, an imperative language, with logic- .

programming features. Alma-0 is tailored for solving search tion

problems and unlike JMatch, provides convenient backtrack-

ing through imperative code. However, Aima-O does notsup- 7 Conclusions
port pattern matching or data abstraction.

Mercury [SHC96] is a modern declarative logic- JMatch extends Java with the ability to describe modal ab-
programming language with modules and separate compi-stractions: abstractions that can be invoked in multiple dif-
lation. As in JMatch, Mercury predicates can have several ferent modes, or directions of computation. Modal abstrac-
modes. Modal abstractions are not first-class in Mercury; a tions can result in simpler code specifications and more read-
single mode of a predicate can be used as a first-class funcable code through the use of pattern matching. These modal
tion value, but unlike in JMatch, there is no way to pass sev- abstractions can be implemented using invertible boolean
eral such modes around as an object and use them to uniformulas that directly describe the relation that the abstrac-
formly implement another modal abstraction. Mercury has tion computes. In its forward mode, this relation is a func-
a more complex mode system that allows a distinction be- tion; in its backward modes it may be one-to-many or many-
tween exactly-one and at-most-one solution. As in JMatch, to-many. JMatch provides mechanisms for conveniently ex-
these declarations are checked statically. Mercury does notploring this multiplicity.

12

JMatch is backwards compatible with Java, but provides

expressive new features that make certain kinds of programs

simpler and clearer. While for some such programs, using a
domain-specific language would be the right choice, having

[FR99]

more features in a general-purpose programming language is
handy because a single language can be used when building

large systems that cross several domains.

A prototype of the JIMatch compiler has been released for
public experimentation, and improvements to this implemen-
tation are continuing.

There are several important directions in which the JMatch [GJSBO00]

language could be usefully extended. An exhaustiveness
analysis for switch statements aatlse disjunctions would

make it easier to reason about program correctness. Auto-

matic elimination of tests that are redundant in a particular
mode might improve performance. And support for iterators
with removal would be useful.

Acknowledgments

The authors would like to thank Brandon Bray and Grant
Wang for many useful discussions on the design of JMatch

and some early implementation work as well. Greg Mor- [IMG'02]

risett and Jim O’Toole also made useful suggestions. Nate
Nystrom helped figure out how to implement JMatch us-

ing Polyglot. Readers of this paper whose advice improved
the presentation include Kavita Bala, Michael Clarkson, Dan
Grossman, Nate Nystrom, and Andrei Sabelfeld.

References

[ABPS98] Krzysztof R. Apt, Jacob Brunekreef, Vincent Parting-
ton, and Andrea Schaerf. Alma-0: An imperative lan-
guage that supports declarative programmingCM
Transactions on Programming Languages and Sys-
tems 20(5):1014-1066, September 1998.

[BC93] F. W. Burton and R. D. Cameron. Pattern matching
with abstract data typesJournal of Functional Pro-
gramming 3(2):171-190, 1993.

[CLOO] K. Claessen and P. Ljungl. Typed logical variables in
Haskell. InHaskell Workshop 200@000.

[CLR90] Thomas A. Cormen, Charles E. Leiserson, and
Ronald L. Rivest. Introduction to Algorithms MIT
Press, 1990.

[Con63] Melvin E. Conway. Design of a separable transition-
diagram compiler. Communications of the ACM
6(7):396—-408, 1963.

[EKC98] Michael Ernst, Craig Kaplan, and Craig Chambers.
Predicate dispatching: A unified theory of dispatch.
In 12th European Conference on Object-Oriented Pro-
gramming pages 186-211, Brussels, Belgium, July
1998.

[FB97] Manuel Rhndrich and John Boyland. Statically check-
able pattern abstractions. Rroc. 2nd ACM SIGPLAN

13

[GHK81]

[Han97]

[HFW86]

[HIW92]

[Jon99]

[Lt81]

[LI099]

[LMO5]

[McC60]

[Mic01]

International Conference on Functional Programming
(ICFP), pages 75-84, June 1997.

Remi Forax and Gilles Roussel. Recursive types and
pattern matching in Java. Broc. International Sym-
posium on Generative and Component-Based Software
Engineering (GCSE '99Erfurt, Germany, September
1999. LNCS 1799.

Ralph E. Griswold, David R. Hanson, and John T.
Korb. Generators in ICONACM Transaction on Pro-
gramming Languages and Syste®&), April 1981.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.
The Java Language SpecificationAddison Wesley,
2nd edition, 2000. ISBN 0-201-31008-2.

Michael Hanus. A unified computation model for
functional and logic programming. IfProc. 24th
ACM Symp. on Principles of Programming Languages
(POPL), pages 80-93, Paris, France, January 1997.

C. T. Haynes, D. P. Friedman, and M. Wand. Obtaining
coroutines from continuationsJournal of Computer
Languages11(3-4):143-153, 1986.

Paul Hudak, Simon Peyton Jones, and Philip Wadler.
Report on the programming language HaskedIG-
PLAN Notices27(5), May 1992.

Trevor Jim, Greg Morrisett, Dan Grossman, Michael
Hicks, James Cheney, and Yanling Wang. Cy-
clone: A safe dialect of C. InProceedings of
the USENIX Annual Technical Conferencpages
275-288, Monterey, CA, June 2002. See also
http://www.cs.cornell.edu/projects/cyclone.

Haskell 98: A non-strict, purely functional
language, February 1999. Available at
http://www.haskell.org/onlinereport/.

B. Liskov et al. CLU reference manual. In Goos
and Hartmanis, editorgecture Notes in Computer Sci-
ence volume 114. Springer-Verlag, Berlin, 1981.

John W. Lloyd. Programming in an integrated func-
tional and logic programming languagelournal of
Functional and Logic Programmin@, March 1999.

Jed Liu and Andrew C. Myers. Interruptible iterators.
Submitted for publication, 2005.

John McCarthy. Recursive functions of symbolic ex-
pressions and their computation by machine, part I.
Comm. of the ACM3(4), April 1960.

Microsoft Corporation.Microsoft C# Language Speci-
fications Microsoft Press, 2001. ISBN 0-7356-1448-2.

[MOSS96] Stephan Murer, Stephen Omohundro, David

[MTH90]

[NCMO2]

Stoutamire, and Clemens Szyperski. Iteration
abstraction in Sathe ACM Transactions on Program-
ming Languages and Systemb8(1):1-15, January
1996.

Robin Milner, Mads Tofte, and Robert HarpeiThe
Definition of Standard ML MIT Press, Cambridge,
MA, 1990.

Nathaniel Nystrom, Michael Clarkson, and Andrew C.
Myers. Polyglot: An extensible compiler framework
for Java. Technical Report 2002-1883, Computer Sci-
ence Dept., Cornell University, 2002.

[Nel91] Greg Nelson, editor. Systems Programming with
Modula-3 Prentice-Hall, 1991.

[NH97] Greg Nelson and Allen Heydon. Juno-2 language defi-
nition. SRC Technical Note 1997-007, Digital Systems
Research Center, June 1997.

[Oka98a] Chris Okasaki. Purely Functional Data Structures
Cambridge University Press, 1998. ISBN 0-521-
63124-6.

[Oka98b] Chris Okasaki. Views for Standard ML. Workshop
on ML, pages 14-23, September 1998.

[OW97] Martin Odersky and Philip Wadler. Pizza into Java:

Translating theory into practice. IfProc. 24th
ACM Symp. on Principles of Programming Languages
(POPL), pages 146-159, Paris, France, January 1997.

[PGPN96] Pedro Palao Gostanza, Ricardo Pena, and Manuel
NUfiez. A new look at pattern matching in abstract data
types. InProc. 1st ACM SIGPLAN International Con-
ference on Functional Programming (ICEMhiladel-
phia, PA, USA, June 1996.

Zoltan Somogyi, Fergus Henderson, and Thomas Con-
way. The execution algorithm of Mercury: an efficient
purely declarative logic programming languageur-

nal of Logic Programming29(1-3):17-64, October—
December 1996.

Guy Steele.Common LISP: the LanguageDigital
Press, second edition, 1990. ISBN 1-55558-041-6.

Mark Tullsen. First-class patterns. Rroc. Practical
Aspects of Declarative Languages, 2nd International
Workshop (PADL)pages 1-15, 2000.

Philip Wadler. Views: A way for pattern matching
to cohabit with data abstraction. Rroceedings, 14th
Symposium on Principles of Programming Languages
pages 307-312. Association for Computing Machin-
ery, 1987.

[SHC96]

[Ste90]

[Tul0o]

[Wad87]

14

A Translating JMatch to Java,...,

The translation from JMatch to Jgyai1q consists of several syntax-
directed functions that are mutually inductively defined. In the
following, let f range over formulas ang range over patterns;
ranges over Jayg1q Statementsy—z range over variables, arid
ranges over sets of variables. The output of each of the translations
is a sequence of Jaya1q Statements.

o S[s] is a Java;ie1q Statement that is equivalent to the JMatch
statement. Itis the identity for statements that do not contain
special JMatch features.

F[f]Us is the translation of a formula. It is a sequence of
Javgielqa Statements that solve the formyland execute the
statement for each solution found. The argumetitis the
set of unknowns to be solved for.

M [p]Uxs and M, [p]Uzs are the pattern-matching forms
of the pattern translation M, and M, give the semantic-
equality and pointer-equality semantics, respectively. Each
produces a sequence of statements that solve the fopmsla

x, wherez is a known variable containing the value to match
p against. For each solution the output code execsitgih

the unknowns irU given satisfying assignments.

Plp]Uws is a pattern translation that solves for the value of
the pattern and its unknowns without a value to match against.
The output code executedor every solution, where the un-
knowns inU are assigned to produce that value fand the
variablew is assigned the value of the pattern

D[d] gives the translation of JMatch iterators. It takes a
JMatch method mode declaration and produces a correspond-
ing Java iterator class.

&[e] andC[e] together give the translation of amerate ex-
pression£ translates theterate expression into an equiva-
lent Java iteratoi¢ generates the container class for the result
values.

Letuf andup be the set of variables declared in the formfilar
patternp, respectively. Letp f andyp be the set of fields accessed
in the formulaf or patternp, respectively. Let variableg denote
fresh variables, antdenote fresh statement labels.

A.1 Statement translations
S[foreach (f) s] = F[fI(uf)(S[s])

Sﬂif (f) s1 else 32]] =
boolean y = true;
FL(f)(y = talse; S[si1]);
if (y) S[s2]

S[[cond (fi) si else s]] =

S[if (f1) s1 else if (f2) sz else if ... else g]

S[switch (e) {case p; where f; : s; default : s}]
Objecty = e¢;
S[if(y=p1&& f1) s1
else if (y = p2 && f2) s2

else s]]

A.2 Formula translations

Formulas are assumed to be in canonical form.

.7:[[]01 && f2]]U5 =
FIAIU O pfO)FLLIU N 1fi)s)

Flallf2lUs = FI[]Us; F[f2]Us
Flfr else fo]Us =

booleany = true;
FlfiJU({y = false; s;})
if (y) F[f2]Us

Flpr = p2]Us =
Object y;
Plp](U 0 pp1)y(Ms[p2] (U \ pp1)ys)

Flpr == p2]Us =
Object y;
Plp:](U 0 pp1)y(Mp[p2] (U \ pp1)ys)

Flpr ' = p2]Us =
Object y1, y2;
Plpa](U 0 pp1)ys (Plp2] (U \ pp1)y2({if (y1 ! = y2) s3))

Flpr < p2]Us =
T1 Y1; T2 Y2;
Plpi](U N pp1)ys (Plp2] (U \ pp1)y2({if (y1 < y2) s}))
wherer; andr, are the types gb; andp., respectively, and can
be replaced witk=, >= and>.

Flsingle (f)]JUs = L: {F[f]JU({s; breakl;})}

FIf trap (7 t;) { si; resume (fi); } catch;JUs =
int y = 0; 7; t; = null;
try {
Fly=0&& /|| 5 =1 & []Us

} trap (7 ¥:) {y = i; t; = y;; resume continue;} catch;

A.3 Pattern translations
An expression with no unknowns can be evaluated directly:
M[p]dxs = {T, y=p; if (z.equals(y)) s}
M, [p]0xs = {T, y=p; if (x == y) s}
Plp]dws = {w=p; s}
Wildcards require no work and bind no variables:
M[_]0zs = s

If a variablew of type T, is matched against a value inof type
T., aruntime check is introducedTt,, is not a supertype df’.:

Mw]{w}zs = if (x instanceof Ty) {Tw w=(Tw)x; s}
Otherwise, the value can be assigned directly.

If a type T is matched against a value inof type 7., a runtime
check is introduced if" is not a supertype df’:

M,[T]0xs = if (x instanceof T') s
Otherwise, the statementan be executed directly.

Mylp1 as p2]Uzs =
My [p1](U N pp1)z(Mp[p2] (U \ pp1)xs)

Mp[[T.m(ﬁ)]]st =
My[ryas y.m(pi)]|(U U {7 y})as

My[single(p)[Uzs = 1 : {M,p[p]Uz({s; breakl;})}
Plsingle(p)][Uws = 1 : {P[p]Uw({s; break;})}

Built-in operators such as and [] support pattern matching.

For brevity, the semantic-equality pattern-matching semantics have

been omitted.

Mylelpl]Uzs =
Object[] ya = €
for (int y; = 0; ¥; < Ya.length; y;++){
if (@==ya [y:]) Myp[p]Uy:s
}

Plelp]]lUws =
Object[] ya = €
for (int y; = 0; ¥i < ya.length; y;++){
w = Yalyl;
) My [p]Uy:s

My[-plUzs =
Ty =-z;
My [p]Uys
wherer is the type ofp and =" can be replaced with+" and “~”.

Pl-plUws =
Plp]Uw({w =-w; s})
where =" can be replaced with+" and “~".

For brevity only the semantics for additive patterns are shown. The

semantics for other arithmetic patterns follow analogously.

Mylp1 + p2]Uzs =
T1 Y15 T2 Y2;
Plpi](U N pp1)yr({y2 = © — y1; Mp[p2] (U \ pp1)y2s})
wherer; andr; are the types gb; andp,, respectively.

Plp1 + p2]Uws =
T1 Y15 T2 Y2;
Plpi (U 0 pp1)ys (Plp2](U — pp1)y2({w = y1 + y2; s3))
wherer; andr; are the types o andp,, respectively.

A.4 Expression translations

For simplicity, the checkpointing portion of the translation is elided.

Cliterate ¢(f)] =
class c{
}
where(7; z;) = pf.

E[iterate ¢(f)] =

new jmatch.runtime.Iterator() {
—_

i 5
protected Object pack() {
cresult = new c();

result.r; = this.z};
return result;
}
protected boolean peek() {
—
Ti Ti;
/ .
FUI(pf){ ;= xi; yield; }
return false;
}
protected boolean findHandler() {
// body filled in during translation from Javayie1a

}
}
where(7; z;) = pf andz}, . . ., z,, are fresh variables.
This translation refers to the framework class

jmatch.runtime.Iterator that contains code common to
all IMatch iterators. The code for this class is given in Appepdlix B.

A5 Methods

Translation of method bodies defined as formulas is based on the

F translation. Each time a solution is found to the unknowns of
a backward mode, it is saved and control is yielded to the calling
context.

Dlboolean p(T; x;) iterates(U) (f)] =
class p$U extends jmatch.runtime.Iterator {
—_
T, $%; // unknown result values

Tk; ;) // these store the known values

N S —
pSU (T, o,) { this.my, = x;; }

public boolean peek() {
e
Ta; Tuys
—_—
FIfIU({this.$i = =xy,; yield;})
return false;

}

protected boolean findHandler() {
// body filled in during translation from Javayie1a
}
}
where{Z, } = U are known and @y, } = {Z:;} \ U are unknown.

D[boolean p(7; z;) returns() (f)]
boolean p(7; =) {
FIf1(f)(return true;)
return false;

¥
Correspondingly, a call to a predicate method in the forward mode
is translated by solving for the arguments and performing the call
for each set of arguments obtained:

]:[[p(ph cee 7pn)]]US
Plpa: [U1ya, (
Plpas1U2yas(

ﬁnpa,LﬂUnya7l(
if(p(y1,...,uyn)) s)

16

where: {1,...,n}={a1,...,an}
Vi=U, Vi=Viei\ ppa;_1, Ui =ViNppa,; (1 <i<m)

A call to a predicate method in a backward mode is translated as a
loop that uses the iterator implemented by this method body:

:F[[po'f(ph R 7pn)ﬂUS
P[[pal]]Ulyal(
P[[p'IQ]]Uanz(

Plpan,|Umya,, (
jmatch.runtime.Iterator [=
new pSM (Y1, .-, Ym);
Throwable e null;
whilegi _____ 1y (I-advance()) {
M{pe, JUT(1.81)(
M(pp, JU5(1.$2)(

Mpe, JUi(1.8K)(s) .. .))
}
if (e instanceof 71) throw (71)e;
if (e instanceof 73) throw (73)e;

if (e instanceof 7{) throw (77)e;
if (e! = null) throwe;)...))

where: {0,...,n} ={ai,...,am,b1,..., bk}
{m,..., 7} are the interrupts handled by the iterator

{71,...,7{} are the trap exceptions thrown by the iterator
W1, Ym] = Yo, - yn] N {Yar, - - - Yau }
Vi=U, V;=Vici\ wpa, 1, Us =ViNppae, (1 <i<m)

Vll = V’m \/’Lpﬂmv ‘/il = ‘/7:/71 \/’Lpbi717 Uzl = ‘/72, m,u'pbiv (1 <
i < k)

Then + 1 patterns to be evaluated are divided into those that
are in a known position in the mode selected (indiees . . , am)
and those that are ndiy(, . . ., bx). The former are solved directly,
as much in a left-to-right order as possible; the latter are matched
using the results provided by the iteragghM that implements the
predicate method. The intersection of a list and a set is a hew list
whose elements are a set intersection but preserve the original order.
The translation of pattern method invocations is similar.

The translation above includes code and annotations used for
interrupt and trap exception dispatch. In the final translation out-
put, the body of the while loop will save intoany trap exceptions
thrown by and break out of the loop. Thus, to facilitate the trans-
lation ofraise statements in the final translation to Java,ithtle
loop is annotated with the variablethat contains the iterator ob-
ject, the variable that is to store the trap exceptions, and the set of
interrupts supported by the iterator.

B Iterator Framework Class

The translations foiiterate expressions in Append[x A.4 and methods in Apperidix| A.5 refer to the following class that contains code
common to all JIMatch iterators.

package jmatch.runtime;
public abstract class Iterator {

protected boolean advanced; // Whether the iterator has advanced via a hasNext() call.
protected boolean haveNext; // The cached result of hasNext().

protected boolean removeSupported;

protected Throwable thrown; // The exception that needs to be handled.

protected Object raised; // The interrupt that needs to be handled.

public int $state$;

public int $yieldpt$;

public int $resumept$;

public Iterator() {
this.raised = this.thrown = null;
advanced = false;

}

public boolean hasNext() {
if (advanced) return haveNext;
if (removeSupported) checkpoint();
advanced = true;
return haveNext = advance();

}

public Object next() {
if (advanced 7 'hasNext : !advance()) throw new java.util.NoSuchElementException();
advanced = false;
return pack();

}

public void remove() {
if (!removeSupported) throw new UnsupportedOperationException();
if (advanced) { advanced = false; restoreState(); }
Throwable t = trap(new jmatch.runtime.Remove());
if (t instanceof RuntimeException) throw (RuntimeException)t;
if (t !'= null) throw new jmatch.runtime.TrapException(t);

}

public boolean advance() {
try {
return peek();
} catch (RuntimeException e) {
throw e;
} catch (Throwable t) {
throw new jmatch.runtime.Error(t);
}
}

/** Handles the given trap and returns any resulting exception. */
public Throwable trap(Object trap) {

if (trap == null) return new NullPointerException();
raised = trap; thrown = null;
try {

if (!findHandler()) {
raised = null;
return new jmatch.runtime.Error("unhandled trap: " + trap);
}
peek();
} catch (Throwable t) {
return t;
}
}

17

/** Packs the iterator’s output data into a single object. */
protected Object pack() { return null; }

/**

* Advances the iterator state. Returns true iff there is a next element. Throws any unhandled
* exceptions.

*/

protected abstract boolean peek() throws Throwable;

/%%

* Sets up the internal state of the iterator to handle the interrupt in "raised" or
* the exception in "thrown". Returns true iff an appropriate handler was found.

*/

protected abstract boolean findHandler();

protected void checkpoint() { ... }
protected void restoreState() { ... }

C Translating Java,,.,, to Java

The form of the output of this translation is shown in Figure 6. Thple 1 gives the inputs and outputs of the translation function. The final Java
translation of an iterator bodyis obtained by evaluating

(n,s',h, L) = T[s]({})1{b = 0,c = 0, try = unit, rb = 0, rc = 0, handler = (A7.(¢, ¢,0))}.

The resulting statements become part of the body of thgeek method, whereas the statemehtdecome part of the body of the
findHandler method:

public boolean peek() { public boolean findHandler() {
while (true) { while (true) {
try { switch ($state$) {
switch ($state$) { h
case 0: s default:
} $state$ = $yieldpt$;
} catch (Throwable t) { return false;
$thrown$ = t; } 3}
if (!findHandler()) throw t;
continue;
}r}

This translation is different from what is implemented in the JMatch compiler. The prototype implementation includes a few optimizations,
including an importantail-yield optimization needed for good asymptotic performance [LM05]. A simplified version of the translation is
provided here to illustrate the semantics of Java.

Statement sequencing
Tls1; s2]jsnr =
let
(n1,81,h1,L1) = T[s1]({$state$ = n; continue;})(n + 1)r
(na, 8, ha, La) = T[s2]jsnar
in
(n27 5/1
case n: s,
hisha,n L)
end

18

If

Inputs:
Javgieiq

int
{b :int,

c:int,
try : int + unit,

rb : int,
rc :int,
handler : k — String x String X int}

Java

The Javgs.1q4 Statement to translate.

Java code to be inserted after the translation of the; Javstatement.
The next unused case label.

The case label targets for unlabeletkak statements. For simplicity
we omit the treatment of labeleéd-eaks andcontinues.

The case label targets for unlabelathtinue statements.

The case label for the innermost try block containing the Jauastate-
ment being translated.

The case label target faksume break statements.

The case label target faksume continue Statements.

A function for finding the handler for aaised interrupt. It maps the
interrupt type to:

e the name of the variable holding the iterator that will handle
interrupt,

e the name of the variable to which any resulting trap excepti
should be assigned, and

e the case label to which control should be transferred if a trap ex
tion is thrown.

the

ons

cep-

Outputs:
int

int list

Java

Java

The next unused case label.
The translated Jgva 4 statement with the Java code applied. This is
main output of the translation.

A series of Java statements to be included in the body for

findHandler () method.
The set of case labels used to translate the top-level block in the

the
the

given

Javg;.q Statement.

Table 1: The signature of the Jgyaq translation function.

;T[[if (e) s1 else sa]jsr =

let
(n1,84,h1, L) = T[s1]({$state$
(na, sh, ha, L2) = T[s2] ({$state$

in
(na,
85
case n: s
case n+1: js,
hi; ha, [n7n+ 1] - Ly - L2)
end

Branching:

Return:

T [return]jsnr =
case n: $yieldpt$ = $state$ =

(n+2,
return true;
case n+ 1: return false;,
€ n,n+1])

n+1; continue;})(n+ 2)r
n+1; continue;})nir

if (e) {$state$ = n; continue; }

T [break]jsnr = (n,{$state$ = #b r; continue;},¢,[])
T [continue]jsnr = (n,{$state$ = #c r; continue;l}, ¢, [])

n—+1;

19

Yield:
T[yield]jsnr =
(n+2, case n: $yieldpt$ = $state$ = n+1;
return true;
case n+ 1: js,

€ [n,n+1])
Raise
T [raise e]jsnr =
let
(p,t,n’) = (#handler r)7,
in
(n, if ((¢t = p.trap(e)) '= null) { $state$ = n'; continue; }
Js»
&[])
end
Try:

’T[[try {s} catch (m1 x1) {s1} catch (7 x2) {s2}...catch (7 zr) {si}
catch (trap 741 Tr+1) {Sk+1} catch (trap Tipto Trt2) {Sk4+2}...catch (trap 7, Twm) {sm}
trap (Tm+1 Tm+1) {Sm41} trap (Tmi2 Tmy2) {Smi2}...trap (7 zp) {sp}t]jsnr =
let
fall_through =
case t of unit = {return false;}
|inti = {$state$ = i; continue;}
end
(n',s',h, L) = T[s]({$state$ = n+p+2; continue;})(n + p+ 3)(r[try — n])
(n1,s1,h1,L1) = T[s1]({$state$ = n+1; return true;})n’(r[rb — n+ p+ 2][rc — n))
(na2, 85, ha, La) = T[s2]({$state$ = n+ 1; return true;})ni(r[rb— n+p+ 2][rc — n])

(np, Spy hp, Lp) = Tsp]({$state$ = n+ 1; return true;})ny,—1(r[rb — n + p+ 2][rc — n])

in
(np, case n: s’
case n+ 1: $state$ = n+p+ 2; continue;
case n+2: 7y x1 = (11) $thrown$; s}
case n+3: ™o x2= (1) $thrown$; s,
case n+m+1: Ty T = (7)) $thrown$; s,,
case n+Mm+2: Tmi1 Tmt1 = (Tmt1) $signal$; s,,
case n+m+3: Tmt2 Tmiy2 = (Tmy2) $signal$; s, o
case n+p+1: 7, xp= (7p) $signal$; s,
case n+p+2: js,
hihis .. hy;
case n:
case n+1:
case L: if ($thrown$ instanceof 71) $state$ = n + 2;
else if ($thrown$ instanceof 7) $state$ = n+ 3;
else ...if ($thrown$ instanceof 7,,) $state$ = n+m+1;
else if ($signal$ instanceof 7,,+1) $state$ = n+m + 2;
else ...if ($signal$ instanceof 7,) $state$ = n+p+1;
else fall_through
return true;,
n+2,n+3,...,n+k+1]-Ly----- L,)
end

20

Resume
T [resume yield]jsnr = (n,{$state$ = $yieldpt$; return true;},e[])

For R € {break, continue, yield}:
T[resume R trap (71 1) {s1}...trap (7% xk) {sw}]jsnr =

let
fall_through =
case #try r of unit = {return false;}
|int i = {$state$ = i; continue;}
end
set_resumept =
case R of yield = {$resumept$ = $yieldpt$;}
|_=e€
end
set_state =
case R of break = {$state$ = #rb r;3}
| continue = {$state$ = #rcr;}
| yield = {$state$ = $resumept$;}
end
(n1,s1,h1, L) = T[si]e(n + &k + 2)r
(na, s, ha, La) = T [so]enir
(nk, S;c, hk, Lk) = T[[sk]]enk_lr
in
(nk, case n: set_resumept
$yieldpt$ = $state$ = n+1;
return true;
case n+ 1: set_state
continue;
case n+2: 71 x1= (11) $signal$; s
case n+3: T2 2= (72) $signal$; sh
case n+k+1: 7 2= (1) $signal$; s},
hi;...; hy;
case n+1: if ($signal$ instanceof 71) $state$ = n + 2;
else if ($signal$ instanceof 72) $state$ = n+ 3;
else ...if ($signal$ instanceof 7;) $state$ = n+k+1;
else fall_through
return true;,
[n,n+2,...,n+k+1]-Ly----- Ly)
end
Loops:
T[do s while e]jsnr =
let
(n',s',h, L) = T[s]({$state$ = n+1; continue;})(n + 3)(r[b — nj[c— n+1])
in
(n, case n: s’
case n+ 1: if (e) { $state$ = n; continue; }
case N+ 2: js,
h,[n,m+1,n+2]-L)
end

21

T[for (s1; e; s2) s3]jsnr =

let
(n',s3,h, L) = T[ss]({$state$ = n+2; continue;})(n +4)(r[b — n+ 3][c+— n+2])
in
(ng, S1
case n: if (le) { $state$ = n+ 3; continue; }
case n+1: s
case n+2: s2; $state$ = n; continue;
case n+3: s,
h,in,n+1,n+2,n+3]-L)
end
7T [while (e) s]jsnr =
let
(n',s',h, L) = T[s]({$state$ = n; continue;})(n + 2)(r[b — n + 1][c — n])
in
(n, case n: if (le) { $state$ = n+1; continue; }
S/
case n+1: jc,
h,[n,n+1]-L)
end
’Tﬂwhile’g;’;wﬂc> (e) s]jsnr =
let
fall_through =
case t of unit = {return false;}
|int i = {$state$ = i;}
end
' = Ar.if 7 € {7} then (p,t,n + 2) else (#handler r)7
r" =rlb — n + 2|[c — n][try — n][handler — ']
(n',s',h, L) = T[s]({$state$ = n; continue;})(n+ 3)r’
in
(n/, case n: if (le) { $state$ = n+ 2; continue; }
S/
case n+1: if ((t = p.trap($signal$)) == null) {
$state$ = $yieldpt$;
return true;
}
case n+2: s,
h;
case n:
case L: if ($signal$ instanceof 7;
|| $signal$ instanceof 72
|| $signal$ instanceof 71) $state$ = n+1;
else fall_through
continue;,
[n+1,n+2])
end

22

	Introduction
	Overview of JMatch
	Formulas
	Patterns
	Pattern constructors
	Methods and modal abstraction
	Implementing methods
	Pattern methods
	Built-in patterns
	Iterator objects
	Exceptions

	Examples
	Functional red-black trees
	Binary search tree membership
	Hash table membership
	Parsing
	Simulating views

	Syntax and static semantics
	JMatch syntactic extensions
	Method and constructor declarations
	Statement extensions
	Expression extensions

	Type checking
	Mode selection
	Multiplicity checking

	Implementation
	Translating JMatch to Java+yield
	Translating Java+yield to Java
	Implementation status

	Related work
	Conclusions
	Translating JMatch to Java+yield
	Statement translations
	Formula translations
	Pattern translations
	Expression translations
	Methods

	Iterator Framework Class
	Translating Java+yield to Java

