Interruptible Iterators

Jed Liu Aaron Kimball Andrew C. Myers

Department of Computer Science
Cornell University

{liujed,ak333,andru}@cs.cornell.edu

Abstract how to support iteration abstractions well in imperative, object-
oriented languages.

Different languages take different approaches to iteration ab-
straction. The Java approach of using iterator objects (cursor ob-
jects) is common; however, iteration abstractions can also be im-
plemented using higher-order functions, as in ML [MTH90], or
through a built-in language feature, as in CLU [LSAS77] or C#
2.0 [HWGO03]. Most mechanisms provide iteration abstractions that
are convenient for client code to use. For example, Java iterator ob-
Aects have methodsext andhasNext for use infor loops.

However, it is often not appreciated that iterators are remarkably
icult to implement in most object-oriented languages. An itera-
object must record the state of the iteration in a way that permits
the iteration to be restarted. This requirement leads to awkward
code reminiscent of continuation-passing style [HFW86]. Conse-
quently, programmers commonly use iterators as clients, but usu-
ally avoid defining their own iteration abstractions, leading to in-
terfaces that are less clean and simple than they could be.

This paper introduces interruptible iterators, a language feature that
makes expressive iteration abstractions much easier to implement
Iteration abstractions are valuable for software design, as shown b
their frequent use in well-designed data structure libraries such as
the Java Collections Framework. While Java iterators support iter-
ation abstraction well from the standpoint of client code, they are
awkward to implement correctly and efficiently, especially if the it-
erator needs to support imperative update of the underlying collec-
tion, such as removing the current element. Some languages, suc
as CLU and C# 2.0, support iteration through a limited coroutine diff
mechanism, but these mechanisms do not support imperative UP+or
dates. Interruptible iterators are more powerful coroutines in which
the loop body is able to interrupt the iterator with requests to per-
form updates. Interrupts are similar to exceptions, but propagate
differently and have resumption semantics. Interruptible iterators
have been implemented as part of the JMatch programming lan-
guage, an exten_ded version ofJava.AJMat_ch reimplem_entation of A number of languages (e.g., {81, GHK81, MMPNO3,
the Java Collections Framework shows t.hat implementations can beMOSSQG, DTHO4, HWG03]) support more convenient implemen-
made substantially shorter and simpler; performance results show,

; ; - . tation of iterators with a structured coroutine mechanism in which
that this language mechanism can also be implemented efficiently. iterator code caryield iterated values back to the loop. How-

Categories and Subject DescriptordD.3.3 [Programming Lan- ever, this mechanism has limitations: in particular, it prevents the
guage¥ Language Constructs and Features— Coroutines; D.1.5 client from modifying the underlying collection during iteration.
[Programming TechniquggObject-oriented Programming; D.1.6 For example, Java iterators usually suppottemove operation

[Programming Techniqugs Logic Programming; D.3.2 Hro- that removes the last element yielded by the iterator. Languages
gramming LanguagésLanguage Classifications— Multiparadigm supporting coroutine iterators do not allow these updates.
languages Implementing a Java iterator object that correctly handles

remove iS even more challenging than implementing a simple non-

mutating iterator. The iterator must be able to handiemove re-

Keywords Coroutine, Exception, Java, JMatch, Logic Program- quest at any point during iteration, update the underlying collection

ming state, and leave the iterator object ready to handle the next request.
At present there is no good way to implement such iterators.

. In this paper, we descriliaterruptible iterators a way to con-

1. Introduction veniently implement efficient iterators that can handle additional

Iteration abstractions are operations intended to support convenientequests such as element removal. Code using an interruptible it-

iteration over the elements of some sequence. Iteration abstractiongrator can raisénterruptsthat request the iterator to perform ad-

are an essential aspect of well-designed interfaces, which is demon-ditional operations such agmove. Like exceptions, interrupts are

strated by their prevalence in modern collection class libraries. & nonlocal control mechanism; unlike exceptions, a handled inter-

Mainstream languages, such as Java [GJSB00] and C# [Mic01], rupt results in resumption, and interrupts propagate logically down-

have been evolving to include features explicitly for iteration ab- Wards in the call stack rather than upward.

straction [Sun04, HWGO3]. It is therefore important to understand ~ This mechanism has been implemented in the JMatch lan-
guage; an implementation is available for public download [LM02].
JMatch introduces interruptible iterators in the context of Java, but
the goal of this paper is not to propose an extension to Java per se,

Permission to make digital or hard copies of all or part of this work for personal or PUt rather to introduce a new iteration mechanism compatible with

classroom use is granted without fee provided that copies are not made or distributedimperative languages in general.

for profit or commercial advantage and that copies bear this notice and the full citation The rest of the paper is structured as follows. Section 2 gives

fonnt;gf'rf;tﬁ’if‘gf'pggrcé”fé’c‘i’f:s%’;":‘rfﬁs';‘f);egr‘]‘g}frhé 10 post on servers or to fedistribute background on previous iterator mechanisms and their limitations.
Section 3 introduces interruptible iterators and describes how they

POPL’06 January 11-13, 2006, Charleston, South Carolina, USA. X .
Copyright(© 2006 ACM 1-59593-027-2/06/0001. . . $5.00. work in the JMatch programming language. JMatch also supports

General Terms Design, Languages

implementation of iterators through a simple logic-programming This example shows the expressive power and convenience of Java
mechanism; the integration of interrupts with this mechanism is iterators for the user of the abstraction.
covered in Section 4. Section 5 discusses some interesting static However, Java iterators are difficult to implement. A Java iter-
checking issues. Section 6 discusses details of the implementationator must be able to accepisNext, next, andremove methods
Results on the expressiveness and performance of JMatch are givet every point during iteration, and therefore it must record enough
in Section 7. Related work is covered in Section 8, and the paper state to allow the iteration computation to be restarted wherever it
concludes in Section 9. The static semantics of interruptible itera- last left off. This often leads to an awkward style of programming in
tors is given in the appendix. which the iterator is implemented as a complicated state machine.
For example, consider implementing an in-order iterator for a bi-
nary search tree without parent node pointers. The iterator has at

2. lteration abstractions least five different states:

lteration abstractions are important for modular software design. 1 pefore any tree elements have been produced,
When used as part of the interface to an abstract data type, an itera-_ . . .
tion abstraction promotes declarative programming and avoids ex- 2 Iterating over the elements of the left child,

posure of the ADT implementation. For this reason, contemporary 3. having just produced the element stored at the current node,
data structure libraries such as STL [MDSO01], the Java Collections 4, iterating over the elements of the right child, and

Framework [GJSBO00], and the Standard ML Basis Library [GRO04]
make extensive use of iteration abstractions.

Like any abstraction, an iteration abstraction defines the inter- |n fact, the iterator has even more states, because the current ele-
action between thelient codethat uses the abstraction and the ment might have been removed by thenove method. The state
plementationof the abstraction. The key property of an iteration machine necessary to correctly handle all possible requests in all
abstraction is that client code is able to obtain, on demand, anotherthese states is complex, particularly if the iterator is to produce each
element from a finite or infinite sequence of values, without caus- element in asymptotically optim&P(1) time. An iterator for even
ing the computation of the entire sequence ahead of time. Typically, a data structure as simple as a binary tree is difficult to write cor-
an iteration abstraction is invoked from a loop in the program. On rectly; it is little wonder that programmers shy away from defining
each loop iteration the iterator is invoked to obtain a value for the their own iteration abstractions.
next iteration.

This paper refers to any abstraction usable in this way as an it- .
erator, regardless of whether it happens to be implemented as aré-2 Imperative update
object (as in Java), a higher-order function (as in SML), or some |y an imperative language like Java, it is important to be able to
specialized construct (as in CLU). The form iterators take depends ypdate data structures—even while they are being iterated over, as
on the language and programming style in use. The challenge forjn the above example. However, operations that change the under-
the language designer is to make iterators convenient for both thejying data structure directly are unsafe during iteration, because a
client and the implementer. This is particularly difficult if impera- change to the data structure might violate invariants that the iterator

5. at the end of the iteration.

tive updates may be needed during the use of the iterator. depends on. For example, deleting a binary search tree node might
leave the iterator pointing to a node that is no longer part of the
2.1 lterator objects tree. Therefore, any updates must go through the iterator so it can

just its internal state to compensate; this is why many iterators in
e Java Collections Framework support te@aove method.
Supporting theremove method is even more challenging than
implementing a simple non-mutating iterator. The iterator must be
able to handle theemove request at any point during iteration,
update the underlying collection state, and leave the iterator object
ready to handle the next element request.

As part of its standard collection classes, the Java language [GJSBO
provides an interfac&terator, modeled on the “Iterator” design
pattern in which iteration abstraction is provided by iterator objects
(also known asursor objects The value of iterator objects is that
they require no special language support.

The Javaterator interface is defined as follows:

interface Iterator {

Ohsoen aserr 0 2.3 Nested iterators and compositionality

void remove(); Abstract data types are frequently implemented using other ab-
} stract data types, and iterators of the higher-level abstraction are
frequently implemented using the iterators of the lower-level ab-
straction. For example, a hash table can be implemented using ar-
rays and linked lists. An iterator over the key—value pairs in the hash
table might be implemented by an iteration over the elements of the
array, with an inner loop iterating over the elements of the linked
list. At run time, thisnested iteratocoding style results, in general,
in a stack of iterators in which higher-level iterators invoke lower-
level iterators, possibly filtering or transforming the values from
the lower level. The same stack of iterators can be seen in iterators
for inductively defined types, such as binary trees, as described in

The next method advances the iterator to the next element in
sequence, and returns it. ThesNext method determines whether
thereis a next element, but has no visible side-effect. Awrtlove
removes the current element, if any. An iterator in Java is an object
whose class implements this interface; iteration is performed by
invoking these methods.

For example, the following Java code iterates over the Collec-
tion c, printing out all its elements, and while doing so, removes all
elements that areul1:

for (Iterator it = c.iterator(); it.hasNext();) { Section 2.1.
Object o = it.next(); Nested iterators create significant challenges for iterator mech-
if (o == null) it.remove(); anisms. In fact, the Javiterator interface is not rich enough to
System.out.println(o); fully support nested iterators, although this seems not to have been
} observed before. The problem lies in an interaction between the

hasNext, next, andremove methods.

When iterators are nested, implementatiorhagNext for a main
higher-level abstraction requires, in general, usea@ft on the
lower-level abstraction, because some elements of the lower-level call
abstraction may be filtered out by the higher level, and must be —
skipped over. For example, in a hash table it may be necessary yield - call
to skip over empty buckets to determine whether there is a non- Call stack
empty bucket still to come. But this creates a conflict wighove,
which is supposed to remove the current element. If the lower-level yield - call
iterator has been advanced by callitgkt, its current element can
no longer be removed by calling it#move operation. Thus, Java
iterators are not compositional.

Coroutine stack

coroutine

2.4 Coroutine iterators Figure 1. A stack of coroutines.

An alternative to iterator objects is coroutine-style iterators, which
were introduced by CLU [[F81] and are found in other lan- . . .
guages such as ICON [GHK81], Sather [MOSS96], Python [vR03], €xample, a fold” abstraction for iterating over values of type
Ruby [DTHO4], and C# 2.0 [MicO1]. In this approach, iterator ab- Might be declared in SML as follows:
stractions are implemented by special iterator methodsyiké#t s
values back to the receiving context (typically, a loop body). These ~ Tu@ fold (body: a * § — [, initial: () : f§
methods are a limited form of coroutine because whenever a new T first argument to this function is the body of the loop that
valuc_a is requesteq from the iterator, execution of the iterator method iteratively receives elements of type implemented as a function
continues immediately after the lasield statement. with typeax 8 — (. The type variable is the type of information

The JMatch language [LMO3], an extension to Java, SUPPOTS that js passed from one loop iteration to the next. The second
coroutine iterators. For example, in JMatch an in-order binary tree grgument is the initial information that begins the iteration; the
iterator can be written succinctly and clearly: result of the whole iteration is the result (of typ last computed
by the loop body. Unlike Java iterators, this kind of iterator cannot
be used as an abstract stream from which elements can be obtained;

class Node {
Node left, right;

int val; the entire use of the iterated values must be expressed in the loop
int elements() iterates(result) { body that is passed as an al’gument
foreach (left != null && int elt = left.elements()) In a functional style, deletion of collection elements is usually
yield elt; accomplished through an operation like SMEs$1ter. Filtering
yield val; results in needless copying when applied to imperative data struc-
foreach (right != null && int elt = right.elements()) tures like hash tables, and lik®1d it has less expressive power
yield elt; than Java iterators.
} ¥ Iteration (and coroutines) can also be implemented using more

powerful constructs such as threads and continuations. Threads in-

The methodelements is an iterator, as indicated by the clause troduce the problem of reasoning about concurrency, and their im-
iterates(result). Using a JMatchforeach statement, the plementatlc_)ns_usually do not '_suppc_)rt the (_ef'fluent, flne-gr_anularlty
method iterates over and yields the elements of the left child, then CONtext switching needed for iteration. Using and reasoning about
yields the value in the tree node, then iterates over and yields the€ontinuations also seems to be difficult for many programmers.
elements of the right child. The code is shorter and clearer than First-class continuations place many demands on the compiler and
its Java counterpart because the various iterator states described ifn-time system; and make optimization (of memory management,
Section 2.1 are now encoded in the next iterator program point to fOr €xample) more difficult.
resume.

In the general case of nested iteratorsstack of coroutines : :
results, asg shown in Figure 1. The top of the stack is the top- 3 Interruptlble Iterators
level iterator that is being used directly by the client code, the next Coroutine-style iterators are convenient for the user and also easy to
coroutine on the stack is for an iterator that the top-level iterator is implement. However, they do not support imperative update oper-
using internally, and so on. ations likeremove. This paper introducesterruptible iterators a

Coroutine iterators are clear, concise, and compositional. They mechanism that extends coroutine iterators to handle update opera-
can also be implemented efficiently, especially when they are in- tions through an exception-like mechanism caltedrrupts(not to
voked from aforeach construct, because in that case they can be be confused with the existing Java mettiidread . interrupt).
allocated on the program stack even when nested [LAS78]; how-
ever, when iterators are first-class (generators, streams, cursor ob . .
jects) their activation records must(gbe heap-allocated. The weak-?"1 Raising interrupts
ness of coroutine iterators is that they do not support imperative The core idea is straightforward: when client code wants to tell the
update such as element removal during iteration. Imperative up- iterator to perform some operation such as removing an element, it
dates must be deferred until there are no iterators observing theinterruptsthe iterator. The iterator handles the interrupt, performs
updated data structure. the operations, and returns control to the place where the interrupt

was raised, typically within a loop body.
. . To raise an interrupt in an iterator, JMatch addsaase state-

2.5 lterators as higher-order functions ment. As with Java exgeptions, theise statement takes an object
Another way to provide iteration abstraction, followed in the func- as an argument that indicates the kind of interrupt, and hence the
tional languages community, is to use higher-order functions. For operation that is intended.

class List implements Collection { Note that when iterators are implemented as higher-order func-

Object head; List tail; tions (“fold” operations), ordinary exceptions as in SML [MTH90]
e have exactly the reverse behavior: they propagate upward from the
Object elements() bottom-most to the topmost iterator on the stack. This makes them
traps SetValue iterates(result) { unsuitable for implementing imperative update.
List cur = this;
Whiie Ecur t= null) { 3.3 Declaring handlers
gield cur.head; JMatch iterators explicitly declare which interrupts they can han-
} trap (SetValue s) { dle, so the compiler can determine that every interrupt will be han-
cur.head = s.value; dled by a single handler. This follows the design of Java, which
} requires that all thrown exceptions be handled, except those cor-
cur = cur.tail; responding to run-time errors. Handling of an interrupt is declared
} with atraps clause in the method header. For example, the follow-
} ... ing Collection interface has aelements method that removes
} an element when it trapskemove interrupt:

- - — - interface Collection {
Figure 2. An iterator with imperative update .
Object elements()
traps Remove iterates(result);
For instance, the Java code example in Section 2.1 can be }

written in JMatch as follows: e .
Thetraps Remove clause specifies that the iteratdfements can

foreach (Object o = c.elements()) { handle any interrupt that is an instance of a subtypeeaibve. In
if (o == null) raise new Remove(); this exampleRemove is a user-defined class; in JMatch, any object
System.out.println(o); type can be used for interrupts.
}
Here, theelements method is an iterator that successively binds 34 Hand“ng Interrupts
the variableo to the elements of the collection. The raise To the iterator code, interrupts appear to be raised just pfterd
statement generatesRemove interrupt which is received by the statements, because these are the points in the code where control is
iterator, causing the iterator to update the collectiaccordingly. handed back to the client code. To handle interrupts frgread,
Once the iterator has finished removing the null element, control is the yield is placed in thetry block of atry...trap statement.
returned to the loop body immediately after theise. Figure 2 shows an iterator for a linked list that can replace list

elements during iteration when it trapS@tValue interrupt.
. In this example, when the handler is finished executing, the

3.2 Interrupt propagation iterator sets its control state so that iteration resumes at the variable
Iterator interrupts and Java exceptions are similar in that they are assignment following thery. It then returns program control to
signals with non-local handlers, but there are two key differences. the caller. If the client code raises several interrupts in succession
The first is that exceptions have termination semantics while inter- before resuming iteration, the same set of interrupt handlers is
rupts haveesumption semanti¢&o075]. Theraise statement in reused for each interrupt. An alternate set of handlers can also be
the example above does not terminateftheeach loop. Once the specified, as discussed in Section 3.6.

Remove interrupt is handled, control returns to the point after the It is also possible to delegate interrupt handling to an iterator
raise statement, and the rest of thereach body is executed. lower on the coroutine stack. Here is a less efficient recursive
The second difference is the direction of propagation. Recall version of theelements iterator, which creates a new iterator for

that in general an iteration is implemented by a stack of coroutines, every node in the linked list:

shown in Figure 1. Whereas Java exceptions propagatiee call
stack, interrupts propagatl®wnthe coroutine stack. Just as a Java
exception can propagate up multiple stack frames before a handler
is found, an interrupt may descend several frames in the coroutine
stack before a handler is found.

In the example above, ttiemove interrupt is handled by the
c.elements coroutine, rather than by coroutines lower on the
stack that are used to implemantelements. These are the only
reasonable semantics because the client code is makiRgitbee
request to the:.elements iterator; if a lower-level iterator tried
to handle the remove request, it might well break data structure }
invariants involving the higher-level abstraction.

For example, in a hash table implemented as an array of linked Here, aSetValue interrupt raised during the secogdeld state-
lists, an iterator for the hash table might use the iterator of the mentis handled by theoreach statement, which passes the inter-
underlying linked-list data structure. Suppose some client code rupt down the coroutine stack until it reaches the instance in which
using the hash table iterator raises an interrupt to insert an elementthe statemenyield head has just been executed. foreach
Inserting into the current linked list would be wrong because the statement handles the same interrupts as its condition expression.
new element might hash to a different location. To preserve the Dynamic propagation of interrupts proceeds downward in the
hash table invariant, the hash table iterator must be able to interceptcoroutine stack, as described. Within each method body, an inter-
the interrupt, and this requires downward interrupt propagation. rupt propagates lexically outward from the lasteld statement

Object elements() traps SetValue
iterates(result) {
try {
yield head;
} trap (SetValue v) {
head = v.value;
}
if (tail != null)
foreach (Object elt = tail.elements())
yield elt;

executed, invoking the innermost handler for the given interrupt. If int elements() traps Remove : Nullify
a method is declared to handle an interrupt, eyeryld must be iterates(result) {

lexically surrounded by either an appropriatey . . . trap or an- tr-}’oieach (loft 1= mull 8% int x = left.elements())
other iterator that handles the interrupt. As discussed in Section 5, yield x; ’
this is statically checked by the compiler. } catch (tr;p Nullify) {
. . . left = null;
3.5 Resuming iteration b

. boolean deleted = false;
In the above examples, the interrupt handlers transfer control back ¢y ¢

to the client code by executing to the end of the handler. Interrupt yield val;

handlers can use thessume statement to complete interrupt han- } trap (Remove) {
dling by explicitly suspending the iterator and transferring control if (deleted) throw IllegalStateException();
back to the client code. Theesume statement has a few variants deleted = true;
that differ in how they set the control state of the suspended iterator. _ if (deleteVal()) resume continue;
Theresume break statement transfers control to the end of the &
associatedry statement. As in the linked list examples above, an tr-}' t b (right != null & int x = right.el £s0)
interrupt handler ends with an implicitesume break if control o;i:;d Xflg Sl TR R T TIEAT.ciements
would otherwise reach the end of the handler. _ } catch (trap Nullify) {
A resume continue Statement returns control to the begin- right = null;
ning of the associategry statement. This is shown in the following }

integer stream iterator example in whiclReset interrupt resets }

the iterator to the beginning of the stream: e
// Returns true when an element is moved up from

int elements() // the right side of the tree. Throws Nullify when
traps Reset iterates(result) { // deleting a leaf node.
try { boolean deleteVal() throws Nullify { ... }

int i = 0;

while (true) { Figure 3. Binary search tree iterator with element removal
yield i;
it++;

¥ main

} trap (Reset) {
resume continue;

}

raise Remove
elements

}

When the iterator traps Aeset interrupt, it uses theresume resume
continue to set the control state back to the beginning ofthg
block and return program control back to the client code.

raise Remove

elements

Finally, a resume yield statement resumes executing the throw Nullify raise Remove
client but returns iterator control to where it was before the in- clements
terrupt handler was invoked. |

. Figure 4. The binary search tree example in Figure 3, handling a
3.6 Exceptions Remove interrupt.

Handling an interrupt may require transferring control either back

up or further down the coroutine stack. A common instance of this

is element removal in data structures. For example, removing an Figure 3 shows how one might remove elements in an unbal-

element from a balanced binary search tree may cause non-localanced binary search tree where #iements iterator is imple-

modifications to the tree. mented recursively. To remove a tree node, the JMatch code refers
Control can be transferred down the coroutine stack by rais- to an elidetieleteVal method. This method removes the value at

ing a new interrupt. To transfer control back up the stack, a handler the node in the usual way, but with two minor differences. First, if

throws atrap exceptionwhich is simply an exception thatis thrown the node being removed is a leaf, the method throvusla ify ex-

in an interrupt handler. Like ordinary Java exceptions, trap excep- ception to indicate that the leaf node should be replaced withi &

tions have termination semantics. Trap exceptions are distinguishedvalue. The call t@eleteVal does not occur in &ry statement that

from regular exceptions because itis illegal for an iterator to yield a handles alullify trap exception, so the trap exception propagates

value to client code during interrupt handling. Trap exceptions can to the iterator’s client for handling. Therefore, the method header

only be handled byrap exception handlers declarestraps Remove : Nullify to indicate that the handler
JMatch follows Java’'s design choice of preferring static errors for Remove can throw alullify trap exception.

over dynamic ones. Thus, the compiler checks that control flow Second,deleteVal returns a boolean indicating whether a

from a trap exception handler must lead teesume Sstatement, or node in the right subtree was used to replace the deleted node, in

else terminate the entire iteration with an exception. Control flow which case the value at the current node has not been yielded yet.

from a regular exception must lead tojaeld statement, or else Therefore,resume continue is used by thekemove handler to

terminate the entire iteration. If a trap exception propagates back ensure that all elements are yielded by the iterator exactly once.

to the context of the originataise statement (that is, it reaches a Figure 4 illustrates the interprocedural control flow that occurs

context that does not handle interrupts), the trap exception becomesvhen client code raiseBemove to remove a leaf node. The in-

an ordinary Java exception that terminates the iteration. terrupt propagates down the coroutine stack until it finds the tree

node containing the last element yielded. Splicing out the leaf node in which different subsets of variables are treated as knowns or

requires access to the previous node, sodiieeteVal method unknowns. The ability to be evaluated in several modes allows a

throws aNullify trap exception to walk up one coroutine stack single formula to implement several iterators at once.

frame. There the exception is caught and the leaf node spliced out; In a given mode, a formula’s variables are eitkeownsor un-

iteration continues from that point in the tree. knowns In the forward mode, all formal arguments are knowns
Client code can raise several successive interrupts before resumand the formula is evaluated as a boolean expression, as in Java. In

ing iteration, and coroutine methods must be prepared to handlebackward modes, the formula behaves like an iterator—some vari-

these interrupts. Aresume Statement may haverap clauses to ables are unknowns and satisfying assignments for them are sought.

specify how to handle the next interrupt. In this example, neither The JMatch compiler generates code to solve for unknowns.

theresume continue statement nor the implicitesume break

statements are annotated with trap clauses. This means the original

set of interrupt handlers handle multiple successive interrupts. 4.4 Modal abstraction

. i Predicate methods can implement multiple modes with a single

4. Declarative iterators boolean formula. For example, thentains method given in Sec-
tion 4.1 has a claustterates (o). This indicates that the method
can be used to solve for the argumentreating it as an unknown.
However, there is also a defaulbrward mode that corresponds to
the ordinary Java interpretation of the method signature: a mode in
which o is known and the method returpsue or false. The body
of contains is a boolean formula that correctly implements both
the backward, iterative mode and the forward, non-iterative mode.

This ability to write code that abstracts over multiple modes
. can make code considerably more compact. It also can simplify
4.1 Predicate methods interfaces. For example, in the Java Collections Framework, the
In JMatch, an iterator can be implemented as a method whoseJavaCollection interface declares separate methods for finding
return type is declared asoolean. The body of the method is @l elements and for checking whether a given object is an element:
a logical formula that expresses the conditions under which the
iterator should yield a value—that is, when the formula would
evaluate tazrue. For example, the simple list iterator of Section 3.4
can be written even more compactly as a logical formula, ignoring The JMatchcontains method in Section 4.1 provides both of
for now the issue of imperative update: these functionalities in one piece of code. In addition, it ensures
that they agree with one another.

In addition to coroutine iterators, JMatch has simple logic program-
ming features that enable a more declarative implementation of it-
eration abstractions. Combining interrupts and logic programming
features enables a single piece of JMatch code to concisely im-
plement multiple Java methods and iterators, while supporting im-
perative update. For details on the logic programming and pattern
matching capabilities of JMatch, see [LMO03].

boolean contains(Object o);
Iterator iterator();

boolean contains(Object o) iterates(o) (: . . .
head == o || In any correct Java implementation, there is an equational re-

tail !'= null &% tail.contains(o) Iathnshlp bet_/veen the_two op.eratlons: any obmq_:iroducz_ad by
) the iterator object satisfie®ntains (o), and any object satisfying
contains (o) is eventually generated by the iterator. When writ-

When this formula is treated as an iterator, the disjunction op- ing the specification for Javeollection, the specifier must de-
erator | | defines different ways to satisfy the condition thais scribe this relationship so implementers can do their job correctly.
contained in the list. Each way yields values to the client. The In JMatch, the equational relationship is specified simply by the
right-hand side is a recursive invocation of thentains predi- fact that these are modes of the same method, and implementing
cate, yielding all the elements in the rest of the list. A disjunction them with a single formula enforces this.
is always explored left-to-right. In general, a method may declare additional modes that the

method implements, beyond the default, forward mode. For exam-
ple, a modeiterates (z;) means that the method iterates over a
4.2 Formulas setof satisfying assignments ;. In iterative modes, results are
In certain contexts, such as in the condition of @each state- returned from the method by theield statement rather than by
ment, a boolean formula may be used if JMatch is able to automat- return.
ically satisfy the formula by choosing values for variables declared ~ The modes of a method may be implemented by separate for-
in it. This capability is used to implement iterators likentains; mulas or using the statement language described in Section 3. The
the JMatch compiler generates code to find all satisfying assign- statement language is useful when no single boolean formula is
ments to the variables (in this case, the variaf)leand these satis- solvable for all modes or when it would lead to inefficient code. For

fying assignments are yielded to the client. _ example, the following code separately implements the two modes
For example, the following code executes the loop body with of List.contains. Theforeach statement used in this example
bound to1, and also executes it withbound to 4 ifp is non-null. loops through the satisfying assignments of a formula.

The variablep is not solved for because it is bound outside the loop;

its value is already known. boolean contains(Object o) {

foreach(int x == 1 || x == 4 && p != null) { ... } return head == o || tail.contains(o);
} iterates(o) {
yield head;
4.3 Modes if (tail != null)
A formula expresses a relation among its variables; given that the foreach (tail.contains(Object tmp)) {
values of some variables are known and some are unknown, it yield tmp;
may be possible to find satisfying assignments for the unknowns. }

In general, a single formula can be evaluated in severades T

From this declaration, the compiler generates separate code forclass Bucket {

each mode. Whenever thentains predicate is used, the com-
piler generates a call to the code for the appropriate mode.

4.5 Handling interrupts

To handle interrupts in declarative iterators, ths . . .trap and
try...catch constructs may be used within boolean formulas.
Here, the body of thery is a boolean formula, whereas theap
handler is a statement. For example, consider implementing the
contains method of a hash table. In the absence&afiove in-
terrupts, both the forward and backward mode can be implemented
compactly in a single boolean formula:

boolean contains(Object key, Object value)
iterates(key) iterates(key, value)
(
int hash = Math.abs(key.hashCode() % table.length) &&
Bucket b = table[hash] &&
b != null &&
b.contains(hash, key, value)

In the forward mode, the hash code is computed and used
to look up aBucket; this bucket then checks using the forward
mode ofBucket.contains to determine if it holds a mapping
for key. In the two backward modes, the array index operation
is used to enumerate all elementstable; the iterative mode of
Bucket.contains is used to enumerate all elements in the bucket
and the values dfash. This single method supersedes at least three
methods of the Javéap interface.

To support element removal, there must be a handler for the
Remove interrupt. In fact, the interrupt handler can be placed inside
the Bucket class, which is simply a linked list, as shown in Fig-
ure 5.Bucket throws aReplace exception when the head of the

int hash;
Object key, value;
Bucket next;

boolean contains(int h, Object k, Object v)
traps Remove: Replace
iterates(k,v)
(
(h = hash & k = key && v = value)
trap (Remove) { throw new Replace(mnext); }
|| next '= null && next.contains(h,k,v)
catch (trap Replace r) {
next = r.entry;
resume continue
trap Remove {
throw new IllegalStateException();
}

Figure 5. Hash table bucket implemented as a linked list.

5. Static checking

Introducing interrupts creates new obligations for static checking.
Raised interrupts and thrown trap exceptions need to be checked to
ensure they are eventually handled. Additionally, interrupt and trap-
exception handlers need to be checked to ensure that all execution
paths lead to either aesume Statement or an exception being
thrown, so that control is transferred back to the client in a way that
the client expects. This section briefly describes how these checks

list is removed:; the hash table catches the exception and updates it@re performed; the formal details are given in the appendix.

array accordingly:

boolean contains(Object key, Object value)
traps Remove
iterates(key) iterates(key, value)
(
(assume (int hash = abs(key.hashCode() % table.length)) &&
Bucket b = table[hash] &&
b !'= null &&
b.contains (hash, key, value))
catch (trap Replace r) {
table[hash] = r.entry;
resume continue
trap Remove {
throw new IllegalStateException();
}

)

Ensuring that raised interrupts are eventually handled involves
checking two properties. First, everyise statement should occur
lexically in aforeach statement whose formula condition handles
the interrupt. A formula handles an interrupt if, for each solution
it generates, there is a unique handler for the interrupt among the
formula terms used to generate the solution. This can be checked
statically by ensuring that all disjuncts in a disjunction have han-
dlers and that exactly one term in any other formula or pattern has
a handler.

Second, iterative method modes must have handlers for the in-
terrupts declared by the method. For a formula implementation,
this means checking that the formula can handle the interrupts. In
a statement-based implementation, eveigld must occur lex-
ically in foreach or try...trap Statements that can handle the
interrupts. Furthermore, eaafesume Statement must either have
a handler for each interrupt or occur in a lexical context that can
handle the interrupts.

Checking that thrown trap exceptions are eventually handled is

Note that the code for handling remove requests is cleanly factoredsimilar to ordinary Java exception checking. The only difference

out from the iteration code. When a table index is updated, the
resume continue restarts the solving of the formula to which
the catch clause is attached. Also, theesume continue has

is the trap exception declarations in method signatures need to be
verified. This requires that each trap exception is annotated with the
interrupt that caused it.

an interrupt handler that traps attempts to remove the same entry Finally, a simple control-flow analysis is sufficient to verify that

twice.

This code contains one user-specified optimizationatiymme
applied to the first conjunct tells the JMatch compiler that it can
assume the conjunct is true if it doesn’t need to solve for variables

all execution paths in interrupt and trap-exception handlers lead to
either aresume Statement or an exception being thrown.

All static analyses performed are strictly intra-procedural and
can be done in a modular fashion. To allow separate compilation,

in it. This conjunct is guaranteed to be true if the hash table satisfies JIMatch . class files record extra information for each method:

its own data structure invariant; thesume prevents the compiler
from generating unnecessary code to check the invariant.

the modes supported, the traps handled, and the trap-exceptions
thrown.

main main main main main
- fp o : - fp o
client client client client client
P resume fp|resume pc f resume fp|resume pc —{resume fp|[resume pc —{resume fp|resume pc
—{ yield fp | yield pc P yield fp | yield pc yield fp | yield pc yield fp | vyield pc
coroutine coroutine coroutine coroutine
P [resume fp[resume pc| § resume fp|resume pc resume fp|resume pc
—* yield fp | yield pc P yield fp | yield pc yield fp | yield pc
coroutine s coroutine s coroutine ;
P P function call P
from client

sp

(a) (b) () (d) (e)

Figure 6. Possible stack layouts of a coroutine. The coroutine’s activation records are kept entirely on the call stack.

6. |mp|ementati0n assembly code. A prototype back end for this translation has been
developed.

The JMatch compiler has been implemented using the Polyglot In the translation to C++, any iterator invoked with #twreach

extensible compiler framework, which is designed to support Java : " ;

- ' : statement keeps its activation record entirely on the program call
language extensions [NCMO3]. The cpmpller checks :JMatqh code stack, as ShOV\?n in Figure 6. The first time E)i/n iteratoFr) isgentered,
and generates Java source code as its output, handing this SOUrCg is” -j1eq as an ordinary function (b). Nested calls are handled
to a Java compiler. It supports separate compilation by embedd'ngsimilarly ©
extra type information into the Java output. This implementation of ™'y the iterator yields back to the client code (d), it adjusts the
JMgtch IS pug)llcly Iavillable fortd]?wrlwloatlj [L'\IAOZ]'t | program countergc) and frame pointerfjp) to resume execution

ecause Java /acks support 1or low-1evel Control over memory i, ype client code. Since the iterator restores the frame pointer,
and st.ack layout, the perfqrmance of code generated by the release ut not the stack pointersp), the bottom of the stack grows to
compiler suffers. To obtain an accurate assessment of the perfor'accommodate the coroutine frames as though they were part of the

mance of interruptiblg iterators, we designed a translation from lient's stack frame. To allow the client to resume execution in the
JMatch to C++. The differences between the Java- and C++-base terator, the program counter and frame pointer for the iterator are

implementations are discussed in Section 6.2. stored in the client’s activation record, allowing the client to resume

execution in the iterator. Function calls from client code allocate at
; the bottom of the stack (e).

6.1 Translation to Java Further speedup is gained by inlining non-recursive iterators

The JMatch implementation translates JMatch into Java in two that have been declarédnal.

major steps, briefly described here. A more detailed account is

given in [LMO3]. o o

In the first pass, modal abstraction is removed by translating 6.3 Tail-yield optimization

logical formulas into statements, using théeld statement 0 j\vatch makes it convenient to compose iterators; however, if itera-
explicitly send results to the client code. Each declared method (45 are not implemented carefully, this convenience can come at a
mode that is implemented as a logical formula is translated t0 ¢qgt. For example, if implemented naively, theckets iterator of
distinct code consisting of JMatch statements. . Figure 5 would takeD(n?) time to iterate over the list.

In the second pass, iterative method modes are translated into “gacause of the recursion. the coroutine stack grows by one
classes that implement the Jagerator interface; this transfor- — game with each iteration. As shown in Figure 1, the request travels

mation is similar to continuation-passing style (CPS) translation. fm the client code down to the bottom of the stack, and in a naive
An iterator object stores a state index that records the program po'“timplementation, the result values are passed all the way back up

for resuming execution when it gets control back from client code. e stack. Thus, each element request would incur a cost linear in
On entry to the iterator, awitch statement is used to jump to the {4 size of the coroutine stack.

appropriate code. . . - . . JMatch solves this by performingail-yield optimization, with

When an iterator receives an interrupt, the existing state index is yhe resylt indicated in Figure 6(c). If no computation is performed
mapped to the index corresponding to the appropriate interrupt han-o resyit values on their way back up to client code, the result
dler. When an interrupt handler ends witlr@sune, it computes \51yes are passed directly to the client code and the next element
the appropriate state index at which to continue iterator execution. request goes directly to the bottom of the stack. Most of the iterator

code examples given so far benefit from this tail-yield optimization.

. For example, with the optimization the recursive linked-list iterator
6.2 Translation to C++ takes linear time, not quadratic time, to traverse a list.
Translating JMatch iterators to Java results in the run-time alloca- When a nested iterator call is tail-yield optimized in the C++
tion of many short-lived heap-allocated objects representing iter- translation, the client's program counter and frame pointer are
ator activation records (see Figure 1). Results from profiling the passed to the nested iterator, as shown in Figure 6(c). This allows it
generated code suggest that performance is hurt substantially byto yield directly back to the client, and the client to directly resume
the additional garbage collection overhead that these objects add. execution in the nested iterator.

The key insight is that allocation of iterator activation records Traditional tail-call optimizations are performed only when a
follows a LIFO stack discipline, and it is therefore possible to method directly returns the result of a call. To make the tail-yield
allocate these objects on the stack, reducing memory managemenbptimization effective, it is important to accommodate simple trans-
overhead. We exploited this insight in designing a translation from formations on the yielded result. For example, a set can be imple-
JMatch to C++ [Str87], with a few macros containing inlined x86 mented by storing its elements as keys in a hash table. An iterator

ArrayList LinkedList HashMap TreeMap

JMatchH Java PolyJ [JMatcH Java PolyJ [JMatcH Java PolyJ [JMatcH Java PolyJ
Inserff 47 | 56 (16%)| 56 (16%)| 55 | 64 (14%)|111 (50%)| 55 | 99 (44%)| 77 (29%)| 100 [229 (56%)|116 (14%)
Delete 21 | 28 (25%)| 29 (28%) 50 | 53 (6%)|104 (52%)| 41 | 73 (44%)| 67 (39%)| 177 |200 (12%)|174 (-2%)
Lookup| 14 | 48 (71%)| 30 (53%)| 58 | 78 (26%)|104 (44%)| 40 | 83 (52%)| 62 (35%)| 56 | 88 (36%)| 75 (25%)
Updatg 13 | 17 (24%)| 16 (19%) 29 | 31 (6%)| 66 (56%) 50 | 92 (46%)| 70 (29%) 95 149 (36%)|106 (10%)
lteratef 65 [124 (48%)|134 (51%) 59 | 87 (32%)|105 (44%)| 40 |133 (70%)|122 (67%)| 245 |251 (2%)|255 (4%)
Views] — |[— (=)|— (=) — |—(—=)|— (—) 47 |104 (55%)| 81 (42%)| 149 |300 (50%)|268 (44%)
Total| 112 [204 (45%)[207 (46%)| 155 |249 (38%)|242 (36%)| 158 |434 (64%)|356 (56%)| 472 |805 (41%)|647 (27%)

Table 1. Lines of code in various ADT implementations. Totals are smaller than actual column sums because of code sharing. Percentages
show how much smaller the corresponding JMatch code is.

boolean f (int x, int y)
iterates(x,y) (
gly,x)
)

7. Results

We evaluated interruptible iterators from the standpoint of both
expressive power and performance.

boolean g(int a, int b)
iterates(a,b) (
a==1 && b==
)

7.1 Expressiveness

To explore the usability and expressive power of JMatch, we reim-
plemented the core collection classes from the Java Collections
Framework. This reimplementation closely mirrors the function-
ality of the Sun Java Collections, including support for views. The
only notable difference is that the JMatch Collections don’t imple-
for the set might be implemented by an iteration over all key—value ment the bidirectional iteration functionality of theist classes.

Figure 7. In a tail-yield optimized call, the sub-iterator receives a
set of pointers to allow it to write result values directly to the client.

pairs in the hash table and dropping the value component. Additionally, the interfaces were redesigned to exploit modal ab-
JMatch allows result values to be reordered and omitted, mak- straction, while keeping the functionality as described. _
ing the tail-yield optimization more widely applicable. In the C++ It is difficult to compare expressive power, but one measure is

implementation, the nested iterator is simply passed a set of point-the amount of code that must be written. Table 1 shows that when
ers that map directly to the result locations from which the client measured in lines of code, the JMatch implementations of the col-

will read (Figure 7). lection classes are substantially shorter than the Sun implementa-
tions; in some cases, less than half as long. Line lengths in the two
6.4 First-class iterators implementations are similar; blank lines and comments were not

.))) counted. The JMatch samples in this paper are representative of the
Like Java, JMatch supports first-class iterator objects that can becoding style used.

used as general streams. Theerate expression produces an To ensure that these results did not merely reflect verbosity on
object of a class implementing the Javeerator interface, @ the part of the implementers at Sun, we also compared against a
shown in the following example: slightly more concise implementation of the Collections Frame-
Collection ¢ = ... ; work written in PolyJ, an extension of Java that supports parametric
Iterator it = iterate MyIter(Object o = c.elements()); polymorphism [MBL97, MLM98]. The JMatch implementations
while (it.hasNext()) { have 35% less code than the PolyJ implementations.
Object o = ((MyIter)it.next()).o; To avoid unfairly penalizing the Java and PolyJ code for features

- not included in the JMatch implementation, the code implementing
¥ these features was not included in the Java and PolyJ line counts.
As discussed in Section 2.3, Java iterators are not compositional ~ The benefit from using JMatch results from a combination of

because client code can remove elements after callaagjext. two features: interruptible coroutine iterators and code sharing
JMatch addresses this issue by specializing the iterators created byhrough modal abstraction. Operations such as lookup and iteration
iterate. can usually be implemented with a single formula that implements
In general, a call tthasNext may need to invokenext on multiple modes of a method. This is particularly trueMafp im-
nested iterators, with arbitrary side effects. To makeNext ap- plementations, which offer several modes of iteration. Interruptible

pear pure, side effects must be rolled back, which is straightfor- iterators provide an expressive way to hantk@ove requests in
ward as long as any side effects are updates to local variables ofboth statement-based and formula-based implementations.
nested iterators. To support rollback, JMatch iterators extend the
standard Java iterator interface with an automatically generated
checkpoint method that records the state of local variables. A
checkgoint is taken on every calliasNext. If a remove operation 7.2 Performance
is performed after a call thasNext and before the corresponding We measured performance to understand whether JMatch can be
call tonext, the checkpoint is used to restore the previous values implemented efficiently. The results suggest it can.
of local variables. Several JMatch iterators were translated into C++ using the
In the translation from JMatch to C++, first-class iterators are translation described in Section 6.2. Their performance was com-
implemented as alterator object that allocates a block of heap pared with equivalent iterators from the C++ Standard Template
memory to use as an internal stack. Iterator code runs on this Library (STL) [MDSO01], and also with the corresponding Java iter-
separate stack, decoupling the iterator and client stacks withoutators. Each JMatch iterator performed similarly to the correspond-
entailing individual heap allocation of iterator activation records. ing STL iterator.

50,000 elements 250,000 elements
ArrayList | LinkedList | HashMap| TreeMap || ArrayList | LinkedList | HashMap| TreeMap
JMatch (foreach) 137.0 55.9 4.2 3.5 135.0 56.1 3.7 3.1
JMatch (first class) 23.2 23.8 3.6 25 22.9 23.7 3.2 24
C++ STL 339.0 57.4 3.7 4.4 215.0 57.7 3.1 3.9
C++ (stack) — — — 4.4 — — — 3.9
Java Collections 10.6 10.1 3.9 3.9 6.3 10.3 4.2 35

Table 2. Iterator performance over collections of 50,000 and 250,000 elements. Numbers reported are in millions of elements iterated per
second. Each number is the average of eight measurements with a standard deviation of at most 5%.

Benchmarks 8. Related work

The Java Collections Framework consists of four core classes: CLU [L*81], ICON [GHK81], Python [vR03], Ruby [DTHO04],
ArrayList, LinkedList, HashMap, andTreeMap. The iterators and C# 2.0 [HWGO03] each support coroutine iterators whose use
for these classes were reimplemented in JMatch and used to comand implementation are convenient; ghis1d statement of JMatch

pare iteration performance. was inspired by CLU. None of these iterator mechanisms, however,
The code for th@reeMap iterator is similar to that listed in Sec- support imperative updates.
tion 2.4. This was compared to the Stkp iterator, which iterates Sather [MOSS96] extends the CLU iterator mechanisms to pro-

over ared-black tree. The STL iterator code exploits parent pointers vide limited support for imperative update, through “hot argu-
stored in every node. For completeness, TheeMap iterator was ments” that can be used to transmit information to an iterator in
also compared against a second C++ tree implementation, whichprogress. This mechanism does not support invocation of update

uses an internal stack of tree nodes to track iteration state. requests (e.gremove) during a loop body. We are unaware of any
The ArrayList andLinkedList iterators were compared to evaluation of the effectiveness of the Sather mechanism for com-
the STLvector andlist iterators, respectively. plex data structure manipulations during iteration.
TheHashMap iterator uses both therrayList andLinkedList Simula [Kir89], Modula-2 [Wir85] and BETA [MMPN93] sup-
iterators. This was compared to thesh map iterator, found inthe port coroutines that can be used to implement iteration abstractions.
Sun extensions to the STL and included in Linux libc++ 3.4.3. Alphard [SWL77] supports iteration througjeneratorswhich

Each benchmark program timed the execution of several runs of are essentially iterator (cursor) objects, and similarly difficult to
each data iterator over collections of 50,000 and 250,000 elementsjmplement.

The benchmarks were compiled usigge 3.4.3 and executed Cedar [Lam83] supports both termination- and resumption-style
on a Fedora Core 3 system. The STL iterators were compiled with exceptions, though not in the context of coroutines, and without
the-02 flag to ensure a good baseline for comparing performance. static checking.

The code generated by the JMatch translation to C++ manipu- Various languages have used logic programming to enable the
lates the program stack in a non-standard way. As a result, somedeclarative implementation of a computation that produces mul-
of the optimizations made bgcc break the benchmark code; and tiple possible results; the best-known is Prolog [WPP77]. Mer-
it was not possible to use the full suite of gcc optimizations on the cury is a good modern example; as in JMatch, predicates can have

output from JMatch. . several modes, a feature originating in some versions of Prolog
The Java iterator benchmarks were run using the Java 1.5(e.g., [Gre87]). Although logic programming languages give the
Hotspot JIT compiler. ability to concisely express computations with multiple results, in

these languages iteration occurs only at top level; there is no way
to use the iteration within a larger program.
Performance Results Other languages such as SML/NJ [SML], Scheme [KCe98],
The results in Table 2 demonstrate that JMatch iterators can be@nd Ruby [DTHO4] support first-class continuations, which can
translated to code that performs comparably to conventional iter- P& used to implement interruptible iterators and coroutines more
ation techniques. JMatch iterators perform almost as well as STL 9enerally [HFW86].
iterators in all cases (faster in the case of the HashMap test), with
the exception ofrrayList. ;
The discrepancy in performance between the JMaiateMap 9. Conclusions
iterator and that of the STL appears related to the inability to inline Iteration abstraction is important and yet poorly supported by the

the (recursive) JMatch iterator. By contrast, the JMatebhMap commonly used imperative object-oriented languages. Coroutine
iterator performs about 15% faster than the STL iterator; this is iterators are concise, readable and can be implemented efficiently.
due to implementation choices made in the STL iteratatisance However, they do not support the full functionality desired by pro-

function. Finally, the JMatchirrayList iterator is significantly grammers, as evidenced by the Javarator interface. The prob-
slower than that of the STL (though still much faster than Java) lem of how to properly support iteration abstraction in imperative
because the STL iterator is just an element pointer directly manip- languages has remained unsolved.
ulated by the client code. This work shows that imperative update operations such as the
First-class iterator objects in JMatch are somewhat slower be- Javaremove method can be accommodated in a coroutine itera-
cause iterator state is checkpointed, as discussed in Section 6.4tor framework, througlinterrupts a new non-local control mech-
and because iterator code can no longer be inlined. However, theanism. Unlike Java iterators, the resulting iterators are composi-
performance is probably still acceptable. tional. The same interrupt mechanism can be applied to iterators
To determine the effectiveness of the tail-yield optimization, the implemented as declarative logical formulas, making code more
TreeMap implementation was translated to C++ with and without concise through modal abstraction.
the tail-yield optimization. The speedup from the tail-yield opti- Using JMatch to implement the most complex classes in the
mization was a factor of four for both 50k and 250k elements. Java Collections Framework has shown that interruptible iterators

lead to substantial improvements in code size and, arguably, clarity. e e1 : I1, E1 Fe ez : I, B2
Measurements show that interruptible iterators have performance |-, ¢; && e5 : I U I, By U E»
comparable to other iterator techniques, because the implementa:
tion can exploit the LIFO allocation discipline of coroutine stacks.

I 75 11> ;é 1:1, 1 dlSJOlnt

Binary comparisons, assignments, and binary patterns

The static and dynamic semantics of the current version of Feeil: I, Feex: Iz, B2 I I disioint
JMatch have been formalized; the static checking of interrupts is Feeiopeg: 1 Ul By UE;, 1, {2 diSjomn
described in the appendix, and the evaluation of JMatch programs)) '
has been described formally as a translation to Java [LM02]. TheseWhereiop € {+, =, /, %, &, |, ", = ==, =, <, <=,>=,>,as}

results suggest that interruptible iterators offer a reasonable way topjsjunction:
solve the problem of implementing iterator abstractions. Lo I\ E Eoer: I E
e €1 .11, L1 e €2 . 12, 52

op € {||, else}
. Fe e1opez : It NIz, (E1 U E2)|(1,n1y)U{none,unk}
A. Interru pt and trap CheCk|ng Constructor invocation:
The following typing rules describe how interrupt checking is done Feei:l;, E; 7(Te;) throus E

in JMatch. The goal is to ensure that every raised interrupt or - pney r(27) - UL, (| @ unk))u (| E:) I; disjoint
thrown trap exception is eventually handled, and that control is p
returned properly to the client througksume.

T'eE i
Method invocation:

. I €e; I“Ez
A.1 Notation —
. . ke m(e) ATy U (U L), €
There are two judgments, for expressions and statements: i
" Expressionsie -1 [, N (Ul U U, DU (U, (1))
.. = Urer(munk)) U(U; £i) U (Uj rep, AT 75
* Statements:, - : I, B, U iterative mode chosen fon !
—_—
1 is the set of interrupts handled. This can_béo indicate that m throws E traps 7; : Ej
there is no yield point in the given expression or statement (and I; and{7;} disjoint
hence no need to handle interrupts): All other expressionse: Fee:0,0
luS=1nsS=5\L=S
\ A.4 Statements
E = {(ej,1;)} is a conservative overapproximation of the set of Eoe: L E
exceptions thrown, each tagged with the interrupt that caused it. Fs yield: 0,0,0 — - - L’ 5
The interrupt tag,; can benone if the exception is an ordinary one, sraisee: L, B, {re}
or unk if the cause of the exception is as yet undetermiriéds Fee: L,E
the set of interrupts that have beeaised in an enclosed lexical o throwe: L, EU{(e,unk)},®

context, but not yet handled.

E|s = {(e,1) : (e,i) € Eandi € S} filters atagged exception Feeile,Be Fss:ils,BsUs

setE against a sef of interrupts. ks foreach (e) s :

E[T'_"",] = U(e,T)EE{(e7 T/)} U U(e,i)eE:i?ﬁ‘r{(e? 7’)} Updates leUls, Es U (U {(T’ unk)})’ Us \IE
interrupt tags inF, remapping the tag to 7'. (1.7")€Ee 7' €Us Ufunk;none}

Set subtraction is extended to include subtypes: Statement sequencing

Fss1: 01, B, Up Fs 521 Iz, B2, Us
Fs s1382 1 11 N 12, (B1 U E2)|(1,A15)U{none,unk}» Ut U Uz

E\ E = {(11,m2) € E| ﬁ(T{,Té) € E. .1 <7 andn < TQ/}
U\NU ={reU|? €U .7<7'} Try:
Fes: L, B, U Fssi: I, By, Us
A.2 Method declarations bs try {s} cateh (r;) {s:} : [| 1i, &, U U (J 1)

7 k3

To ensure that every raised interrupt or thrown trap exception is
eventually handled, we verify that each iterative method mode ad- - PR S —
heres to the method signature’s interrupt and trap exception dec- ¢ = £\ {(7i;unk), (7i, none)} U (U; Ei)l(n; 1,)u {none,unk}
—_—

larations. In a method that declaresaps 7;: 7, each iterative Fss:1,E,U
mode must satisfy: Fssi: I, B, U; bss;:1;,E;,U; Fo sk : I, Ep, Uy
Fs try {s} trap (7;) {s;} catch (trap 7;) {s;}

catch (1) {sk}: Z,E,U

where:

T
o . e: {7}, {7/, 7}, where the mode is implemented with the
formulae; or else

N where:
o s: {7}, {r],7:},0, where the mode is implemented with _
the statement. I = ({u{=HnN L)L) N (N dk)

& = ((BE\{(r,00ject), (7), unk), (7}, none)})

A3 Formulas U (Us Bi)

Fe false: 1,0 U (U(T,unk)gEj,(Tj,T/)GE{(ﬂ ™)1
Conjunction: U (U ryes; rrzand (1731 U (U Br))lz
Feei: L0 bFeej:ILE U = UUuU;U)uU;Uj) U (U Us)

I | {i.51 =1{1,2}

Resume The rules forresume break andresume continue are identi-
cal to the following rules foresume yield.

ks resume yield: 1, 0,0
Fs it Iy, B4, Us

ks resume yield trap (7;) {s:} :

All other statementss: Fss: L, 0,0

Acknowledgments

Steve Chong, Michael Clarkson, Nate Nystrom and Lantian Zheng gave
many useful comments on the presentation.

This research was supported in part by ONR Grant NO0014-01-1-0968,
by NSF Grants 0208642, 0133302, and 0430161, and by an Alfred P. Sloan
Research Fellowship. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes, notwithstanding any copyright

[LMO3]

[LSAS77]

[MBL97]

[MDSO01]

[Mic01]

annotation thereon. The views and conclusions contained herein are those[MLMgs]
of the authors and should not be interpreted as necessarily representing the

official policies or endorsement, either expressed or implied, of the fund-

ing agencies. Aaron Kimball was supported by an Engineering Learning [MMPN93]

Initiatives grant funded by Intel.

References

[DTHO4] Chad Fowler Dave Thomas and Andy HurRrogramming
Ruby: The Pragmatic Programmers’ Guid&@he Pragmatic
Programmers, 2nd edition, 2004. ISBN 0-974-51405-5.

[GHK81] Ralph E. Griswold, David R. Hanson, and John T. Korb.
Generators in ICON.ACM Transaction on Programming
Languages and Systen®2), April 1981.

[GJSBO0] James Gosling, Bill Joy, Guy Steele, and Gilad Bradte
Java Language SpecificatiorAddison Wesley, 2nd edition,
2000. ISBN 0-201-31008-2.

[Goo75] John B. Goodenough. Exception handling design issues.
SIGPLAN Noticesl0(7):41-45, 1975.

[GRO4] Emden R. Gansner and John H. Reppye Standard ML
Basis Library Cambridge University Press, October 2004.

[Gre87] Steven Gregoryrarallel Programming in PARLOGAddison-
Wesley, 1987.

[HFW86] C.T.Haynes, D. P. Friedman, and M. Wand. Obtaining corou-
tines from continuationsJournal of Computer Languages
11(3-4):143-153, 1986.

[HWGO03] Anders Hejlsberg, Scott Wiltamuth, and Peter Goldée
C# Programming LanguageAddison-Wesley, 1st edition,
October 2003. ISBN 0321154916.

[KCe98] Richard Kelsey, William Clinger, and Jonathan Rees (editors).
Revised report on the algorithmic language SchereCM
SIGPLAN Notices33(9):26—76, October 1998.

[Kir89] B. Kirkerud. Object-Oriented Programming with SIMULA
Addison-Wesley, 1989.

[L*81] B. Liskov et al. CLU reference manual. In Goos and
Hartmanis, editorsLecture Notes in Computer Science
volume 114. Springer-Verlag, Berlin, 1981.

[Lam83] Butler Lampson. A description of the Cedar language: A
Cedar language reference manual. Technical Report CSL-83-
15, Xerox PARC, December 1983.

[LAS78] B. Liskov, R. Atkinson, and R. Scheifler. Aspects of
implementing CLU. IrProceedings of the Annual Conference
ACM, 1978.

[LMO2] Jed Liu and Andrew C. Myers. JMatch: Java plus pattern
matching. Technical Report TR2002-1878, Computer Science
Department, Cornell University, October 2002. Software re-
lease ahttp://www.cs.cornell.edu/projects/jmatch.

[MOSS96]

[MTH90]

[NCMO3]

[SML]
[Str87]
[Sun04]

[SWL77]

[VRO3]

[Wir85]

[WPP77]

Jed Liu and Andrew C. Myers. JMatch: Abstract iterable
pattern matching for Java. Proc. 5th Int'l Symp. on Practical
Aspects of Declarative Languages (PADpages 110-127,
New Orleans, LA, January 2003.

B. Liskov, A. Snyder, R. Atkinson, and J. C. Schaffert.
Abstraction mechanisms in CLU.Comm. of the ACM
20(8):564-576, August 1977. Also in S. Zdonik and D.
Maier, eds.Readings in Object-Oriented Database Systems

Andrew C. Myers, Joseph A. Bank, and Barbara Liskov.
Parameterized types for Java. Pnoc. 24th ACM Symp. on
Principles of Programming Languages (POPppges 132—
145, Paris, France, January 1997.

David R. Musser, Gillmer J. Derge, and Atul Saifihe STL
Tutorial and Reference GuideAddison-Wesley, 2nd edition,
2001. ISBN 0-201-37923-6.

Microsoft CorporationMicrosoft C# Language Specifications
Microsoft Press, 2001. ISBN 0-7356-1448-2.

Andrew C. Myers, Barbara Liskov, and Nicholas Mathewson.
PolyJ: Parameterized types for Java. Software release, at
http://www.cs.cornell.edu/polyj, July 1998.

O. Lehrmann Madsen, B. Mgller-Pedersen, and K. Nygaard.
Object Oriented Programming in the BETA Programming
Language Addison-Wesley, June 1993.

Stephan Murer, Stephen Omohundro, David Stoutamire, and
Clemens Szyperski. Iteration abstraction in Sathe€M
Transactions on Programming Languages and Systems
18(1):1-15, January 1996.

Robin Milner, Mads Tofte, and Robert Harpd&the Definition
of Standard ML MIT Press, Cambridge, MA, 1990.

Nathaniel Nystrom, Michael Clarkson, and Andrew C. Myers.
Polyglot: An extensible compiler framework for Java. larél
Hedin, editor,Compiler Construction, 12th International
Conference, CC 2003 wumber 2622 in Lecture Notes in
Computer Science, pages 138-152, Warsaw, Poland, April
2003. Springer-Verlag.

The SML/NJ Fellowship. Standard ML of New Jersey
http://www.sminj.org/.

B. Stroustrup.The C++ Programming LanguageAddison-
Wesley, 1987.

Sun MicrosystemsJDK 5 Java Language Documentation
2004. http://java.sun.com/j2se/1.5.0/docs/guide/language.

M. Shaw, W. Wulf, and R. London. Abstraction and
verification in Alphard: Defining and specifying iteration
and generator€Comm. of the ACM20(8), August 1977.

Guido van RossuniThe Python Language Reference Manual
Network Theory, Ltd., September 2003.

Niklaus Wirth. Programming in Modula-2 Springer Verlag,
Berlin, 3rd edition, 1985.

David H. D. Warren, Luis M. Pereira, and Fernando Pereira.
Prolog—the language and its implementation compared with
Lisp. InProc. 1977 Symposium on Artificial Intelligence and
Programming Languagepages 109-115, 1977.

