
Interruptible Iterators

Jed Liu Aaron Kimball Andrew C. Myers
Department of Computer Science

Cornell University
{liujed,ak333,andru}@cs.cornell.edu

Abstract
This paper introduces interruptible iterators, a language feature that
makes expressive iteration abstractions much easier to implement.
Iteration abstractions are valuable for software design, as shown by
their frequent use in well-designed data structure libraries such as
the Java Collections Framework. While Java iterators support iter-
ation abstraction well from the standpoint of client code, they are
awkward to implement correctly and efficiently, especially if the it-
erator needs to support imperative update of the underlying collec-
tion, such as removing the current element. Some languages, such
as CLU and C# 2.0, support iteration through a limited coroutine
mechanism, but these mechanisms do not support imperative up-
dates. Interruptible iterators are more powerful coroutines in which
the loop body is able to interrupt the iterator with requests to per-
form updates. Interrupts are similar to exceptions, but propagate
differently and have resumption semantics. Interruptible iterators
have been implemented as part of the JMatch programming lan-
guage, an extended version of Java. A JMatch reimplementation of
the Java Collections Framework shows that implementations can be
made substantially shorter and simpler; performance results show
that this language mechanism can also be implemented efficiently.

Categories and Subject DescriptorsD.3.3 [Programming Lan-
guages]: Language Constructs and Features— Coroutines; D.1.5
[Programming Techniques]: Object-oriented Programming; D.1.6
[Programming Techniques]: Logic Programming; D.3.2 [Pro-
gramming Languages]: Language Classifications— Multiparadigm
languages

General Terms Design, Languages

Keywords Coroutine, Exception, Java, JMatch, Logic Program-
ming

1. Introduction
Iteration abstractions are operations intended to support convenient
iteration over the elements of some sequence. Iteration abstractions
are an essential aspect of well-designed interfaces, which is demon-
strated by their prevalence in modern collection class libraries.
Mainstream languages, such as Java [GJSB00] and C# [Mic01],
have been evolving to include features explicitly for iteration ab-
straction [Sun04, HWG03]. It is therefore important to understand

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’06 January 11–13, 2006, Charleston, South Carolina, USA.
Copyright c© 2006 ACM 1-59593-027-2/06/0001. . . $5.00.

how to support iteration abstractions well in imperative, object-
oriented languages.

Different languages take different approaches to iteration ab-
straction. The Java approach of using iterator objects (cursor ob-
jects) is common; however, iteration abstractions can also be im-
plemented using higher-order functions, as in ML [MTH90], or
through a built-in language feature, as in CLU [LSAS77] or C#
2.0 [HWG03]. Most mechanisms provide iteration abstractions that
are convenient for client code to use. For example, Java iterator ob-
jects have methodsnext andhasNext for use infor loops.

However, it is often not appreciated that iterators are remarkably
difficult to implement in most object-oriented languages. An itera-
tor object must record the state of the iteration in a way that permits
the iteration to be restarted. This requirement leads to awkward
code reminiscent of continuation-passing style [HFW86]. Conse-
quently, programmers commonly use iterators as clients, but usu-
ally avoid defining their own iteration abstractions, leading to in-
terfaces that are less clean and simple than they could be.

A number of languages (e.g., [L+81, GHK81, MMPN93,
MOSS96, DTH04, HWG03]) support more convenient implemen-
tation of iterators with a structured coroutine mechanism in which
iterator code canyield iterated values back to the loop. How-
ever, this mechanism has limitations: in particular, it prevents the
client from modifying the underlying collection during iteration.
For example, Java iterators usually support aremove operation
that removes the last element yielded by the iterator. Languages
supporting coroutine iterators do not allow these updates.

Implementing a Java iterator object that correctly handles
remove is even more challenging than implementing a simple non-
mutating iterator. The iterator must be able to handle aremove re-
quest at any point during iteration, update the underlying collection
state, and leave the iterator object ready to handle the next request.
At present there is no good way to implement such iterators.

In this paper, we describeinterruptible iterators, a way to con-
veniently implement efficient iterators that can handle additional
requests such as element removal. Code using an interruptible it-
erator can raiseinterrupts that request the iterator to perform ad-
ditional operations such asremove. Like exceptions, interrupts are
a nonlocal control mechanism; unlike exceptions, a handled inter-
rupt results in resumption, and interrupts propagate logically down-
wards in the call stack rather than upward.

This mechanism has been implemented in the JMatch lan-
guage; an implementation is available for public download [LM02].
JMatch introduces interruptible iterators in the context of Java, but
the goal of this paper is not to propose an extension to Java per se,
but rather to introduce a new iteration mechanism compatible with
imperative languages in general.

The rest of the paper is structured as follows. Section 2 gives
background on previous iterator mechanisms and their limitations.
Section 3 introduces interruptible iterators and describes how they
work in the JMatch programming language. JMatch also supports

implementation of iterators through a simple logic-programming
mechanism; the integration of interrupts with this mechanism is
covered in Section 4. Section 5 discusses some interesting static
checking issues. Section 6 discusses details of the implementation.
Results on the expressiveness and performance of JMatch are given
in Section 7. Related work is covered in Section 8, and the paper
concludes in Section 9. The static semantics of interruptible itera-
tors is given in the appendix.

2. Iteration abstractions
Iteration abstractions are important for modular software design.
When used as part of the interface to an abstract data type, an itera-
tion abstraction promotes declarative programming and avoids ex-
posure of the ADT implementation. For this reason, contemporary
data structure libraries such as STL [MDS01], the Java Collections
Framework [GJSB00], and the Standard ML Basis Library [GR04]
make extensive use of iteration abstractions.

Like any abstraction, an iteration abstraction defines the inter-
action between theclient codethat uses the abstraction and theim-
plementationof the abstraction. The key property of an iteration
abstraction is that client code is able to obtain, on demand, another
element from a finite or infinite sequence of values, without caus-
ing the computation of the entire sequence ahead of time. Typically,
an iteration abstraction is invoked from a loop in the program. On
each loop iteration the iterator is invoked to obtain a value for the
next iteration.

This paper refers to any abstraction usable in this way as an it-
erator, regardless of whether it happens to be implemented as an
object (as in Java), a higher-order function (as in SML), or some
specialized construct (as in CLU). The form iterators take depends
on the language and programming style in use. The challenge for
the language designer is to make iterators convenient for both the
client and the implementer. This is particularly difficult if impera-
tive updates may be needed during the use of the iterator.

2.1 Iterator objects
As part of its standard collection classes, the Java language [GJSB00]
provides an interfaceIterator, modeled on the “Iterator” design
pattern in which iteration abstraction is provided by iterator objects
(also known ascursor objects). The value of iterator objects is that
they require no special language support.

The JavaIterator interface is defined as follows:

interface Iterator {
boolean hasNext();
Object next();
void remove();

}

The next method advances the iterator to the next element in
sequence, and returns it. ThehasNext method determines whether
thereis a next element, but has no visible side-effect. Andremove
removes the current element, if any. An iterator in Java is an object
whose class implements this interface; iteration is performed by
invoking these methods.

For example, the following Java code iterates over the Collec-
tion c, printing out all its elements, and while doing so, removes all
elements that arenull:

for (Iterator it = c.iterator(); it.hasNext();) {
Object o = it.next();
if (o == null) it.remove();
System.out.println(o);

}

This example shows the expressive power and convenience of Java
iterators for the user of the abstraction.

However, Java iterators are difficult to implement. A Java iter-
ator must be able to accepthasNext, next, andremove methods
at every point during iteration, and therefore it must record enough
state to allow the iteration computation to be restarted wherever it
last left off. This often leads to an awkward style of programming in
which the iterator is implemented as a complicated state machine.
For example, consider implementing an in-order iterator for a bi-
nary search tree without parent node pointers. The iterator has at
least five different states:

1. before any tree elements have been produced,

2. iterating over the elements of the left child,

3. having just produced the element stored at the current node,

4. iterating over the elements of the right child, and

5. at the end of the iteration.

In fact, the iterator has even more states, because the current ele-
ment might have been removed by theremove method. The state
machine necessary to correctly handle all possible requests in all
these states is complex, particularly if the iterator is to produce each
element in asymptotically optimalO(1) time. An iterator for even
a data structure as simple as a binary tree is difficult to write cor-
rectly; it is little wonder that programmers shy away from defining
their own iteration abstractions.

2.2 Imperative update
In an imperative language like Java, it is important to be able to
update data structures—even while they are being iterated over, as
in the above example. However, operations that change the under-
lying data structure directly are unsafe during iteration, because a
change to the data structure might violate invariants that the iterator
depends on. For example, deleting a binary search tree node might
leave the iterator pointing to a node that is no longer part of the
tree. Therefore, any updates must go through the iterator so it can
adjust its internal state to compensate; this is why many iterators in
the Java Collections Framework support theremove method.

Supporting theremove method is even more challenging than
implementing a simple non-mutating iterator. The iterator must be
able to handle theremove request at any point during iteration,
update the underlying collection state, and leave the iterator object
ready to handle the next element request.

2.3 Nested iterators and compositionality
Abstract data types are frequently implemented using other ab-
stract data types, and iterators of the higher-level abstraction are
frequently implemented using the iterators of the lower-level ab-
straction. For example, a hash table can be implemented using ar-
rays and linked lists. An iterator over the key–value pairs in the hash
table might be implemented by an iteration over the elements of the
array, with an inner loop iterating over the elements of the linked
list. At run time, thisnested iteratorcoding style results, in general,
in a stack of iterators in which higher-level iterators invoke lower-
level iterators, possibly filtering or transforming the values from
the lower level. The same stack of iterators can be seen in iterators
for inductively defined types, such as binary trees, as described in
Section 2.1.

Nested iterators create significant challenges for iterator mech-
anisms. In fact, the JavaIterator interface is not rich enough to
fully support nested iterators, although this seems not to have been
observed before. The problem lies in an interaction between the
hasNext, next, andremove methods.

When iterators are nested, implementation ofhasNext for a
higher-level abstraction requires, in general, use ofnext on the
lower-level abstraction, because some elements of the lower-level
abstraction may be filtered out by the higher level, and must be
skipped over. For example, in a hash table it may be necessary
to skip over empty buckets to determine whether there is a non-
empty bucket still to come. But this creates a conflict withremove,
which is supposed to remove the current element. If the lower-level
iterator has been advanced by callingnext, its current element can
no longer be removed by calling itsremove operation. Thus, Java
iterators are not compositional.

2.4 Coroutine iterators
An alternative to iterator objects is coroutine-style iterators, which
were introduced by CLU [L+81] and are found in other lan-
guages such as ICON [GHK81], Sather [MOSS96], Python [vR03],
Ruby [DTH04], and C# 2.0 [Mic01]. In this approach, iterator ab-
stractions are implemented by special iterator methods thatyield
values back to the receiving context (typically, a loop body). These
methods are a limited form of coroutine because whenever a new
value is requested from the iterator, execution of the iterator method
continues immediately after the lastyield statement.

The JMatch language [LM03], an extension to Java, supports
coroutine iterators. For example, in JMatch an in-order binary tree
iterator can be written succinctly and clearly:

class Node {
Node left, right;
int val;
int elements() iterates(result) {

foreach (left != null && int elt = left.elements())
yield elt;

yield val;
foreach (right != null && int elt = right.elements())

yield elt;
}

}

The methodelements is an iterator, as indicated by the clause
iterates(result). Using a JMatchforeach statement, the
method iterates over and yields the elements of the left child, then
yields the value in the tree node, then iterates over and yields the
elements of the right child. The code is shorter and clearer than
its Java counterpart because the various iterator states described in
Section 2.1 are now encoded in the next iterator program point to
resume.

In the general case of nested iterators, astack of coroutines
results, as shown in Figure 1. The top of the stack is the top-
level iterator that is being used directly by the client code, the next
coroutine on the stack is for an iterator that the top-level iterator is
using internally, and so on.

Coroutine iterators are clear, concise, and compositional. They
can also be implemented efficiently, especially when they are in-
voked from aforeach construct, because in that case they can be
allocated on the program stack even when nested [LAS78]; how-
ever, when iterators are first-class (generators, streams, cursor ob-
jects) their activation records must be heap-allocated. The weak-
ness of coroutine iterators is that they do not support imperative
update such as element removal during iteration. Imperative up-
dates must be deferred until there are no iterators observing the
updated data structure.

2.5 Iterators as higher-order functions
Another way to provide iteration abstraction, followed in the func-
tional languages community, is to use higher-order functions. For

Call stack

main

coroutine

coroutine

coroutine

coroutine

call

call

call

yield

yield

yield

call

yield

Coroutine stack

Figure 1. A stack of coroutines.

example, a “fold” abstraction for iterating over values of typeα
might be declared in SML as follows:

fun fold (body: α * β → β, initial: β) : β

The first argument to this function is the body of the loop that
iteratively receives elements of typeα, implemented as a function
with typeα∗β → β. The type variableβ is the type of information
that is passed from one loop iteration to the next. The second
argument is the initial information that begins the iteration; the
result of the whole iteration is the result (of typeβ) last computed
by the loop body. Unlike Java iterators, this kind of iterator cannot
be used as an abstract stream from which elements can be obtained;
the entire use of the iterated values must be expressed in the loop
body that is passed as an argument.

In a functional style, deletion of collection elements is usually
accomplished through an operation like SML’sfilter. Filtering
results in needless copying when applied to imperative data struc-
tures like hash tables, and likefold it has less expressive power
than Java iterators.

Iteration (and coroutines) can also be implemented using more
powerful constructs such as threads and continuations. Threads in-
troduce the problem of reasoning about concurrency, and their im-
plementations usually do not support the efficient, fine-granularity
context switching needed for iteration. Using and reasoning about
continuations also seems to be difficult for many programmers.
First-class continuations place many demands on the compiler and
run-time system; and make optimization (of memory management,
for example) more difficult.

3. Interruptible iterators
Coroutine-style iterators are convenient for the user and also easy to
implement. However, they do not support imperative update oper-
ations likeremove. This paper introducesinterruptible iterators, a
mechanism that extends coroutine iterators to handle update opera-
tions through an exception-like mechanism calledinterrupts(not to
be confused with the existing Java methodThread.interrupt).

3.1 Raising interrupts
The core idea is straightforward: when client code wants to tell the
iterator to perform some operation such as removing an element, it
interruptsthe iterator. The iterator handles the interrupt, performs
the operations, and returns control to the place where the interrupt
was raised, typically within a loop body.

To raise an interrupt in an iterator, JMatch adds araise state-
ment. As with Java exceptions, theraise statement takes an object
as an argument that indicates the kind of interrupt, and hence the
operation that is intended.

class List implements Collection {
Object head; List tail;
...
Object elements()

traps SetValue iterates(result) {
List cur = this;
while (cur != null) {

try {
yield cur.head;

} trap (SetValue s) {
cur.head = s.value;

}
cur = cur.tail;

}
} ...

}

Figure 2. An iterator with imperative update

For instance, the Java code example in Section 2.1 can be
written in JMatch as follows:

foreach (Object o = c.elements()) {
if (o == null) raise new Remove();
System.out.println(o);

}

Here, theelements method is an iterator that successively binds
the variableo to the elements of the collectionc. The raise
statement generates aRemove interrupt which is received by the
iterator, causing the iterator to update the collectionc accordingly.
Once the iterator has finished removing the null element, control is
returned to the loop body immediately after theraise.

3.2 Interrupt propagation
Iterator interrupts and Java exceptions are similar in that they are
signals with non-local handlers, but there are two key differences.
The first is that exceptions have termination semantics while inter-
rupts haveresumption semantics[Goo75]. Theraise statement in
the example above does not terminate theforeach loop. Once the
Remove interrupt is handled, control returns to the point after the
raise statement, and the rest of theforeach body is executed.

The second difference is the direction of propagation. Recall
that in general an iteration is implemented by a stack of coroutines,
shown in Figure 1. Whereas Java exceptions propagateup the call
stack, interrupts propagatedownthe coroutine stack. Just as a Java
exception can propagate up multiple stack frames before a handler
is found, an interrupt may descend several frames in the coroutine
stack before a handler is found.

In the example above, theRemove interrupt is handled by the
c.elements coroutine, rather than by coroutines lower on the
stack that are used to implementc.elements. These are the only
reasonable semantics because the client code is making theRemove
request to thec.elements iterator; if a lower-level iterator tried
to handle the remove request, it might well break data structure
invariants involving the higher-level abstraction.

For example, in a hash table implemented as an array of linked
lists, an iterator for the hash table might use the iterator of the
underlying linked-list data structure. Suppose some client code
using the hash table iterator raises an interrupt to insert an element.
Inserting into the current linked list would be wrong because the
new element might hash to a different location. To preserve the
hash table invariant, the hash table iterator must be able to intercept
the interrupt, and this requires downward interrupt propagation.

Note that when iterators are implemented as higher-order func-
tions (“fold” operations), ordinary exceptions as in SML [MTH90]
have exactly the reverse behavior: they propagate upward from the
bottom-most to the topmost iterator on the stack. This makes them
unsuitable for implementing imperative update.

3.3 Declaring handlers
JMatch iterators explicitly declare which interrupts they can han-
dle, so the compiler can determine that every interrupt will be han-
dled by a single handler. This follows the design of Java, which
requires that all thrown exceptions be handled, except those cor-
responding to run-time errors. Handling of an interrupt is declared
with atraps clause in the method header. For example, the follow-
ing Collection interface has anelements method that removes
an element when it traps aRemove interrupt:

interface Collection {
...
Object elements()

traps Remove iterates(result);
}

Thetraps Remove clause specifies that the iteratorelements can
handle any interrupt that is an instance of a subtype ofRemove. In
this example,Remove is a user-defined class; in JMatch, any object
type can be used for interrupts.

3.4 Handling interrupts
To the iterator code, interrupts appear to be raised just afteryield
statements, because these are the points in the code where control is
handed back to the client code. To handle interrupts from ayield,
theyield is placed in thetry block of atry. . .trap statement.
Figure 2 shows an iterator for a linked list that can replace list
elements during iteration when it traps aSetValue interrupt.

In this example, when the handler is finished executing, the
iterator sets its control state so that iteration resumes at the variable
assignment following thetry. It then returns program control to
the caller. If the client code raises several interrupts in succession
before resuming iteration, the same set of interrupt handlers is
reused for each interrupt. An alternate set of handlers can also be
specified, as discussed in Section 3.6.

It is also possible to delegate interrupt handling to an iterator
lower on the coroutine stack. Here is a less efficient recursive
version of theelements iterator, which creates a new iterator for
every node in the linked list:

Object elements() traps SetValue
iterates(result) {

try {
yield head;

} trap (SetValue v) {
head = v.value;

}
if (tail != null)

foreach (Object elt = tail.elements())
yield elt;

}

Here, aSetValue interrupt raised during the secondyield state-
ment is handled by theforeach statement, which passes the inter-
rupt down the coroutine stack until it reaches the instance in which
the statementyield head has just been executed. Aforeach
statement handles the same interrupts as its condition expression.

Dynamic propagation of interrupts proceeds downward in the
coroutine stack, as described. Within each method body, an inter-
rupt propagates lexically outward from the lastyield statement

executed, invoking the innermost handler for the given interrupt. If
a method is declared to handle an interrupt, everyyield must be
lexically surrounded by either an appropriatetry...trap or an-
other iterator that handles the interrupt. As discussed in Section 5,
this is statically checked by the compiler.

3.5 Resuming iteration
In the above examples, the interrupt handlers transfer control back
to the client code by executing to the end of the handler. Interrupt
handlers can use theresume statement to complete interrupt han-
dling by explicitly suspending the iterator and transferring control
back to the client code. Theresume statement has a few variants
that differ in how they set the control state of the suspended iterator.

Theresume break statement transfers control to the end of the
associatedtry statement. As in the linked list examples above, an
interrupt handler ends with an implicitresume break if control
would otherwise reach the end of the handler.

A resume continue statement returns control to the begin-
ning of the associatedtry statement. This is shown in the following
integer stream iterator example in which aReset interrupt resets
the iterator to the beginning of the stream:

int elements()
traps Reset iterates(result) {

try {
int i = 0;
while (true) {

yield i;
i++;

}
} trap (Reset) {

resume continue;
}

}

When the iterator traps aReset interrupt, it uses theresume
continue to set the control state back to the beginning of thetry
block and return program control back to the client code.

Finally, a resume yield statement resumes executing the
client but returns iterator control to where it was before the in-
terrupt handler was invoked.

3.6 Exceptions
Handling an interrupt may require transferring control either back
up or further down the coroutine stack. A common instance of this
is element removal in data structures. For example, removing an
element from a balanced binary search tree may cause non-local
modifications to the tree.

Control can be transferred down the coroutine stack by rais-
ing a new interrupt. To transfer control back up the stack, a handler
throws atrap exception, which is simply an exception that is thrown
in an interrupt handler. Like ordinary Java exceptions, trap excep-
tions have termination semantics. Trap exceptions are distinguished
from regular exceptions because it is illegal for an iterator to yield a
value to client code during interrupt handling. Trap exceptions can
only be handled bytrap exception handlers.

JMatch follows Java’s design choice of preferring static errors
over dynamic ones. Thus, the compiler checks that control flow
from a trap exception handler must lead to aresume statement, or
else terminate the entire iteration with an exception. Control flow
from a regular exception must lead to ayield statement, or else
terminate the entire iteration. If a trap exception propagates back
to the context of the originalraise statement (that is, it reaches a
context that does not handle interrupts), the trap exception becomes
an ordinary Java exception that terminates the iteration.

int elements() traps Remove : Nullify
iterates(result) {

try {
foreach (left != null && int x = left.elements())

yield x;
} catch (trap Nullify) {

left = null;
}
boolean deleted = false;
try {

yield val;
} trap (Remove) {

if (deleted) throw IllegalStateException();
deleted = true;
if (deleteVal()) resume continue;

}
try {

foreach (right != null && int x = right.elements())
yield x;

} catch (trap Nullify) {
right = null;

}
}
...
// Returns true when an element is moved up from
// the right side of the tree. Throws Nullify when
// deleting a leaf node.
boolean deleteVal() throws Nullify { ... }

Figure 3. Binary search tree iterator with element removal

main

raise Remove

raise Removethrow Nullify

raise Remove

resume

elements

elements

elements

Figure 4. The binary search tree example in Figure 3, handling a
Remove interrupt.

Figure 3 shows how one might remove elements in an unbal-
anced binary search tree where theelements iterator is imple-
mented recursively. To remove a tree node, the JMatch code refers
to an elideddeleteVal method. This method removes the value at
the node in the usual way, but with two minor differences. First, if
the node being removed is a leaf, the method throws aNullify ex-
ception to indicate that the leaf node should be replaced with anull
value. The call todeleteVal does not occur in atry statement that
handles aNullify trap exception, so the trap exception propagates
to the iterator’s client for handling. Therefore, the method header
declarestraps Remove : Nullify to indicate that the handler
for Remove can throw aNullify trap exception.

Second,deleteVal returns a boolean indicating whether a
node in the right subtree was used to replace the deleted node, in
which case the value at the current node has not been yielded yet.
Therefore,resume continue is used by theRemove handler to
ensure that all elements are yielded by the iterator exactly once.

Figure 4 illustrates the interprocedural control flow that occurs
when client code raisesRemove to remove a leaf node. The in-
terrupt propagates down the coroutine stack until it finds the tree

node containing the last element yielded. Splicing out the leaf node
requires access to the previous node, so thedeleteVal method
throws aNullify trap exception to walk up one coroutine stack
frame. There the exception is caught and the leaf node spliced out;
iteration continues from that point in the tree.

Client code can raise several successive interrupts before resum-
ing iteration, and coroutine methods must be prepared to handle
these interrupts. Aresume statement may havetrap clauses to
specify how to handle the next interrupt. In this example, neither
theresume continue statement nor the implicitresume break
statements are annotated with trap clauses. This means the original
set of interrupt handlers handle multiple successive interrupts.

4. Declarative iterators
In addition to coroutine iterators, JMatch has simple logic program-
ming features that enable a more declarative implementation of it-
eration abstractions. Combining interrupts and logic programming
features enables a single piece of JMatch code to concisely im-
plement multiple Java methods and iterators, while supporting im-
perative update. For details on the logic programming and pattern
matching capabilities of JMatch, see [LM03].

4.1 Predicate methods
In JMatch, an iterator can be implemented as a method whose
return type is declared asboolean. The body of the method is
a logical formula that expresses the conditions under which the
iterator should yield a value—that is, when the formula would
evaluate totrue. For example, the simple list iterator of Section 3.4
can be written even more compactly as a logical formula, ignoring
for now the issue of imperative update:

boolean contains(Object o) iterates(o) (
head == o ||
tail != null && tail.contains(o)

)

When this formula is treated as an iterator, the disjunction op-
erator|| defines different ways to satisfy the condition thato is
contained in the list. Each way yields values to the client. The
right-hand side is a recursive invocation of thecontains predi-
cate, yielding all the elements in the rest of the list. A disjunction
is always explored left-to-right.

4.2 Formulas
In certain contexts, such as in the condition of aforeach state-
ment, a boolean formula may be used if JMatch is able to automat-
ically satisfy the formula by choosing values for variables declared
in it. This capability is used to implement iterators likecontains;
the JMatch compiler generates code to find all satisfying assign-
ments to the variables (in this case, the variableo), and these satis-
fying assignments are yielded to the client.

For example, the following code executes the loop body withx
bound to1, and also executes it withx bound to 4 ifp is non-null.
The variablep is not solved for because it is bound outside the loop;
its value is already known.

foreach(int x == 1 || x == 4 && p != null) { ... }

4.3 Modes
A formula expresses a relation among its variables; given that the
values of some variables are known and some are unknown, it
may be possible to find satisfying assignments for the unknowns.
In general, a single formula can be evaluated in severalmodes,

in which different subsets of variables are treated as knowns or
unknowns. The ability to be evaluated in several modes allows a
single formula to implement several iterators at once.

In a given mode, a formula’s variables are eitherknownsor un-
knowns. In the forward mode, all formal arguments are knowns
and the formula is evaluated as a boolean expression, as in Java. In
backward modes, the formula behaves like an iterator—some vari-
ables are unknowns and satisfying assignments for them are sought.
The JMatch compiler generates code to solve for unknowns.

4.4 Modal abstraction
Predicate methods can implement multiple modes with a single
boolean formula. For example, thecontains method given in Sec-
tion 4.1 has a clauseiterates(o). This indicates that the method
can be used to solve for the argumento, treating it as an unknown.
However, there is also a default,forward mode that corresponds to
the ordinary Java interpretation of the method signature: a mode in
whicho is known and the method returnstrue orfalse. The body
of contains is a boolean formula that correctly implements both
the backward, iterative mode and the forward, non-iterative mode.

This ability to write code that abstracts over multiple modes
can make code considerably more compact. It also can simplify
interfaces. For example, in the Java Collections Framework, the
JavaCollection interface declares separate methods for finding
all elements and for checking whether a given object is an element:

boolean contains(Object o);
Iterator iterator();

The JMatchcontains method in Section 4.1 provides both of
these functionalities in one piece of code. In addition, it ensures
that they agree with one another.

In any correct Java implementation, there is an equational re-
lationship between the two operations: any objecto produced by
the iterator object satisfiescontains(o), and any object satisfying
contains(o) is eventually generated by the iterator. When writ-
ing the specification for JavaCollection, the specifier must de-
scribe this relationship so implementers can do their job correctly.
In JMatch, the equational relationship is specified simply by the
fact that these are modes of the same method, and implementing
them with a single formula enforces this.

In general, a method may declare additional modes that the
method implements, beyond the default, forward mode. For exam-
ple, a modeiterates(~xi) means that the method iterates over a
setof satisfying assignments to~xi. In iterative modes, results are
returned from the method by theyield statement rather than by
return.

The modes of a method may be implemented by separate for-
mulas or using the statement language described in Section 3. The
statement language is useful when no single boolean formula is
solvable for all modes or when it would lead to inefficient code. For
example, the following code separately implements the two modes
of List.contains. Theforeach statement used in this example
loops through the satisfying assignments of a formula.

boolean contains(Object o) {
return head == o || tail.contains(o);

} iterates(o) {
yield head;
if (tail != null)

foreach (tail.contains(Object tmp)) {
yield tmp;

}
}

From this declaration, the compiler generates separate code for
each mode. Whenever thecontains predicate is used, the com-
piler generates a call to the code for the appropriate mode.

4.5 Handling interrupts
To handle interrupts in declarative iterators, thetry...trap and
try...catch constructs may be used within boolean formulas.
Here, the body of thetry is a boolean formula, whereas thetrap
handler is a statement. For example, consider implementing the
contains method of a hash table. In the absence ofRemove in-
terrupts, both the forward and backward mode can be implemented
compactly in a single boolean formula:

boolean contains(Object key, Object value)
iterates(key) iterates(key, value)

(
int hash = Math.abs(key.hashCode() % table.length) &&
Bucket b = table[hash] &&
b != null &&
b.contains(hash, key, value)

)

In the forward mode, the hash code is computed and used
to look up aBucket; this bucket then checks using the forward
mode ofBucket.contains to determine if it holds a mapping
for key. In the two backward modes, the array index operation
is used to enumerate all elements oftable; the iterative mode of
Bucket.contains is used to enumerate all elements in the bucket
and the values ofhash. This single method supersedes at least three
methods of the JavaMap interface.

To support element removal, there must be a handler for the
Remove interrupt. In fact, the interrupt handler can be placed inside
the Bucket class, which is simply a linked list, as shown in Fig-
ure 5.Bucket throws aReplace exception when the head of the
list is removed; the hash table catches the exception and updates its
array accordingly:

boolean contains(Object key, Object value)
traps Remove
iterates(key) iterates(key, value)

(
(assume(int hash = abs(key.hashCode() % table.length)) &&
Bucket b = table[hash] &&
b != null &&
b.contains(hash, key, value))

catch (trap Replace r) {
table[hash] = r.entry;
resume continue

trap Remove {
throw new IllegalStateException();

}
}

)

Note that the code for handling remove requests is cleanly factored
out from the iteration code. When a table index is updated, the
resume continue restarts the solving of the formula to which
the catch clause is attached. Also, theresume continue has
an interrupt handler that traps attempts to remove the same entry
twice.

This code contains one user-specified optimization: theassume
applied to the first conjunct tells the JMatch compiler that it can
assume the conjunct is true if it doesn’t need to solve for variables
in it. This conjunct is guaranteed to be true if the hash table satisfies
its own data structure invariant; theassume prevents the compiler
from generating unnecessary code to check the invariant.

class Bucket {
int hash;
Object key, value;
Bucket next;
...
boolean contains(int h, Object k, Object v)

traps Remove: Replace
iterates(k,v)

(
(h = hash && k = key && v = value)

trap (Remove) { throw new Replace(next); }
|| next != null && next.contains(h,k,v)

catch (trap Replace r) {
next = r.entry;
resume continue

trap Remove {
throw new IllegalStateException();

}
}

)
}

Figure 5. Hash table bucket implemented as a linked list.

5. Static checking
Introducing interrupts creates new obligations for static checking.
Raised interrupts and thrown trap exceptions need to be checked to
ensure they are eventually handled. Additionally, interrupt and trap-
exception handlers need to be checked to ensure that all execution
paths lead to either aresume statement or an exception being
thrown, so that control is transferred back to the client in a way that
the client expects. This section briefly describes how these checks
are performed; the formal details are given in the appendix.

Ensuring that raised interrupts are eventually handled involves
checking two properties. First, everyraise statement should occur
lexically in aforeach statement whose formula condition handles
the interrupt. A formula handles an interrupt if, for each solution
it generates, there is a unique handler for the interrupt among the
formula terms used to generate the solution. This can be checked
statically by ensuring that all disjuncts in a disjunction have han-
dlers and that exactly one term in any other formula or pattern has
a handler.

Second, iterative method modes must have handlers for the in-
terrupts declared by the method. For a formula implementation,
this means checking that the formula can handle the interrupts. In
a statement-based implementation, everyyield must occur lex-
ically in foreach or try. . .trap statements that can handle the
interrupts. Furthermore, eachresume statement must either have
a handler for each interrupt or occur in a lexical context that can
handle the interrupts.

Checking that thrown trap exceptions are eventually handled is
similar to ordinary Java exception checking. The only difference
is the trap exception declarations in method signatures need to be
verified. This requires that each trap exception is annotated with the
interrupt that caused it.

Finally, a simple control-flow analysis is sufficient to verify that
all execution paths in interrupt and trap-exception handlers lead to
either aresume statement or an exception being thrown.

All static analyses performed are strictly intra-procedural and
can be done in a modular fashion. To allow separate compilation,
JMatch.class files record extra information for each method:
the modes supported, the traps handled, and the trap-exceptions
thrown.

(a)

main

client

coroutine

resume fp resume pc

yield fp yield pc

coroutine

resume fp resume pc

yield fp yield pc

sp

fp
function call

from client

main

client
sp

fp
client

main

coroutine

resume fp resume pc

yield fp yield pc

sp

fp

client

main

coroutine

resume fp resume pc

yield fp yield pc

coroutine

resume fp resume pc

yield fp yield pc

sp

fp

main

client

coroutine

resume fp resume pc

yield fp yield pc

coroutine

resume fp resume pc

yield fp yield pc

sp

fp

(b) (c) (d) (e)

Figure 6. Possible stack layouts of a coroutine. The coroutine’s activation records are kept entirely on the call stack.

6. Implementation
The JMatch compiler has been implemented using the Polyglot
extensible compiler framework, which is designed to support Java
language extensions [NCM03]. The compiler checks JMatch code
and generates Java source code as its output, handing this source
to a Java compiler. It supports separate compilation by embedding
extra type information into the Java output. This implementation of
JMatch is publicly available for download [LM02].

Because Java lacks support for low-level control over memory
and stack layout, the performance of code generated by the released
compiler suffers. To obtain an accurate assessment of the perfor-
mance of interruptible iterators, we designed a translation from
JMatch to C++. The differences between the Java- and C++-based
implementations are discussed in Section 6.2.

6.1 Translation to Java
The JMatch implementation translates JMatch into Java in two
major steps, briefly described here. A more detailed account is
given in [LM03].

In the first pass, modal abstraction is removed by translating
logical formulas into statements, using theyield statement to
explicitly send results to the client code. Each declared method
mode that is implemented as a logical formula is translated to
distinct code consisting of JMatch statements.

In the second pass, iterative method modes are translated into
classes that implement the JavaIterator interface; this transfor-
mation is similar to continuation-passing style (CPS) translation.
An iterator object stores a state index that records the program point
for resuming execution when it gets control back from client code.
On entry to the iterator, aswitch statement is used to jump to the
appropriate code.

When an iterator receives an interrupt, the existing state index is
mapped to the index corresponding to the appropriate interrupt han-
dler. When an interrupt handler ends with aresume, it computes
the appropriate state index at which to continue iterator execution.

6.2 Translation to C++
Translating JMatch iterators to Java results in the run-time alloca-
tion of many short-lived heap-allocated objects representing iter-
ator activation records (see Figure 1). Results from profiling the
generated code suggest that performance is hurt substantially by
the additional garbage collection overhead that these objects add.

The key insight is that allocation of iterator activation records
follows a LIFO stack discipline, and it is therefore possible to
allocate these objects on the stack, reducing memory management
overhead. We exploited this insight in designing a translation from
JMatch to C++ [Str87], with a few macros containing inlined x86

assembly code. A prototype back end for this translation has been
developed.

In the translation to C++, any iterator invoked with theforeach
statement keeps its activation record entirely on the program call
stack, as shown in Figure 6. The first time an iterator is entered,
it is called as an ordinary function (b). Nested calls are handled
similarly (c).

When the iterator yields back to the client code (d), it adjusts the
program counter (pc) and frame pointer (fp) to resume execution
in the client code. Since the iterator restores the frame pointer,
but not the stack pointer (sp), the bottom of the stack grows to
accommodate the coroutine frames as though they were part of the
client’s stack frame. To allow the client to resume execution in the
iterator, the program counter and frame pointer for the iterator are
stored in the client’s activation record, allowing the client to resume
execution in the iterator. Function calls from client code allocate at
the bottom of the stack (e).

Further speedup is gained by inlining non-recursive iterators
that have been declaredfinal.

6.3 Tail-yield optimization
JMatch makes it convenient to compose iterators; however, if itera-
tors are not implemented carefully, this convenience can come at a
cost. For example, if implemented naively, theBuckets iterator of
Figure 5 would takeO(n2) time to iterate over the list.

Because of the recursion, the coroutine stack grows by one
frame with each iteration. As shown in Figure 1, the request travels
from the client code down to the bottom of the stack, and in a naive
implementation, the result values are passed all the way back up
the stack. Thus, each element request would incur a cost linear in
the size of the coroutine stack.

JMatch solves this by performing atail-yield optimization, with
the result indicated in Figure 6(c). If no computation is performed
on result values on their way back up to client code, the result
values are passed directly to the client code and the next element
request goes directly to the bottom of the stack. Most of the iterator
code examples given so far benefit from this tail-yield optimization.
For example, with the optimization the recursive linked-list iterator
takes linear time, not quadratic time, to traverse a list.

When a nested iterator call is tail-yield optimized in the C++
translation, the client’s program counter and frame pointer are
passed to the nested iterator, as shown in Figure 6(c). This allows it
to yield directly back to the client, and the client to directly resume
execution in the nested iterator.

Traditional tail-call optimizations are performed only when a
method directly returns the result of a call. To make the tail-yield
optimization effective, it is important to accommodate simple trans-
formations on the yielded result. For example, a set can be imple-
mented by storing its elements as keys in a hash table. An iterator

ArrayList LinkedList HashMap TreeMap
JMatch Java PolyJ JMatch Java PolyJ JMatch Java PolyJ JMatch Java PolyJ

Insert 47 56 (16%) 56 (16%) 55 64 (14%) 111 (50%) 55 99 (44%) 77 (29%) 100 229 (56%) 116 (14%)
Delete 21 28 (25%) 29 (28%) 50 53 (6%) 104 (52%) 41 73 (44%) 67 (39%) 177 200 (12%) 174 (-2%)

Lookup 14 48 (71%) 30 (53%) 58 78 (26%) 104 (44%) 40 83 (52%) 62 (35%) 56 88 (36%) 75 (25%)
Update 13 17 (24%) 16 (19%) 29 31 (6%) 66 (56%) 50 92 (46%) 70 (29%) 95 149 (36%) 106 (10%)
Iterate 65 124 (48%) 134 (51%) 59 87 (32%) 105 (44%) 40 133 (70%) 122 (67%) 245 251 (2%) 255 (4%)
Views — — (—) — (—) — — (—) — (—) 47 104 (55%) 81 (42%) 149 300 (50%) 268 (44%)
Total 112 204 (45%) 207 (46%) 155 249 (38%) 242 (36%) 158 434 (64%) 356 (56%) 472 805 (41%) 647 (27%)

Table 1. Lines of code in various ADT implementations. Totals are smaller than actual column sums because of code sharing. Percentages
show how much smaller the corresponding JMatch code is.

boolean f(int x, int y)

 iterates(x,y) (

 g(y,x)

)

boolean g(int a, int b)

 iterates(a,b) (

 a==1 && b==2

)

1

y

2

x

a b

Figure 7. In a tail-yield optimized call, the sub-iterator receives a
set of pointers to allow it to write result values directly to the client.

for the set might be implemented by an iteration over all key–value
pairs in the hash table and dropping the value component.

JMatch allows result values to be reordered and omitted, mak-
ing the tail-yield optimization more widely applicable. In the C++
implementation, the nested iterator is simply passed a set of point-
ers that map directly to the result locations from which the client
will read (Figure 7).

6.4 First-class iterators
Like Java, JMatch supports first-class iterator objects that can be
used as general streams. Theiterate expression produces an
object of a class implementing the JavaIterator interface, as
shown in the following example:

Collection c = ... ;
Iterator it = iterate MyIter(Object o = c.elements());
while (it.hasNext()) {

Object o = ((MyIter)it.next()).o;
...

}

As discussed in Section 2.3, Java iterators are not compositional
because client code can remove elements after callinghasNext.
JMatch addresses this issue by specializing the iterators created by
iterate.

In general, a call tohasNext may need to invokenext on
nested iterators, with arbitrary side effects. To makehasNext ap-
pear pure, side effects must be rolled back, which is straightfor-
ward as long as any side effects are updates to local variables of
nested iterators. To support rollback, JMatch iterators extend the
standard Java iterator interface with an automatically generated
checkpoint method that records the state of local variables. A
checkpoint is taken on every call tohasNext. If a remove operation
is performed after a call tohasNext and before the corresponding
call to next, the checkpoint is used to restore the previous values
of local variables.

In the translation from JMatch to C++, first-class iterators are
implemented as anIterator object that allocates a block of heap
memory to use as an internal stack. Iterator code runs on this
separate stack, decoupling the iterator and client stacks without
entailing individual heap allocation of iterator activation records.

7. Results
We evaluated interruptible iterators from the standpoint of both
expressive power and performance.

7.1 Expressiveness
To explore the usability and expressive power of JMatch, we reim-
plemented the core collection classes from the Java Collections
Framework. This reimplementation closely mirrors the function-
ality of the Sun Java Collections, including support for views. The
only notable difference is that the JMatch Collections don’t imple-
ment the bidirectional iteration functionality of theList classes.
Additionally, the interfaces were redesigned to exploit modal ab-
straction, while keeping the functionality as described.

It is difficult to compare expressive power, but one measure is
the amount of code that must be written. Table 1 shows that when
measured in lines of code, the JMatch implementations of the col-
lection classes are substantially shorter than the Sun implementa-
tions; in some cases, less than half as long. Line lengths in the two
implementations are similar; blank lines and comments were not
counted. The JMatch samples in this paper are representative of the
coding style used.

To ensure that these results did not merely reflect verbosity on
the part of the implementers at Sun, we also compared against a
slightly more concise implementation of the Collections Frame-
work written in PolyJ, an extension of Java that supports parametric
polymorphism [MBL97, MLM98]. The JMatch implementations
have 35% less code than the PolyJ implementations.

To avoid unfairly penalizing the Java and PolyJ code for features
not included in the JMatch implementation, the code implementing
these features was not included in the Java and PolyJ line counts.

The benefit from using JMatch results from a combination of
two features: interruptible coroutine iterators and code sharing
through modal abstraction. Operations such as lookup and iteration
can usually be implemented with a single formula that implements
multiple modes of a method. This is particularly true ofMap im-
plementations, which offer several modes of iteration. Interruptible
iterators provide an expressive way to handleremove requests in
both statement-based and formula-based implementations.

7.2 Performance
We measured performance to understand whether JMatch can be
implemented efficiently. The results suggest it can.

Several JMatch iterators were translated into C++ using the
translation described in Section 6.2. Their performance was com-
pared with equivalent iterators from the C++ Standard Template
Library (STL) [MDS01], and also with the corresponding Java iter-
ators. Each JMatch iterator performed similarly to the correspond-
ing STL iterator.

50,000 elements 250,000 elements
ArrayList LinkedList HashMap TreeMap ArrayList LinkedList HashMap TreeMap

JMatch (foreach) 137.0 55.9 4.2 3.5 135.0 56.1 3.7 3.1
JMatch (first class) 23.2 23.8 3.6 2.5 22.9 23.7 3.2 2.4

C++ STL 339.0 57.4 3.7 4.4 215.0 57.7 3.1 3.9
C++ (stack) — — — 4.4 — — — 3.9

Java Collections 10.6 10.1 3.9 3.9 6.3 10.3 4.2 3.5

Table 2. Iterator performance over collections of 50,000 and 250,000 elements. Numbers reported are in millions of elements iterated per
second. Each number is the average of eight measurements with a standard deviation of at most 5%.

Benchmarks

The Java Collections Framework consists of four core classes:
ArrayList, LinkedList, HashMap, andTreeMap. The iterators
for these classes were reimplemented in JMatch and used to com-
pare iteration performance.

The code for theTreeMap iterator is similar to that listed in Sec-
tion 2.4. This was compared to the STLmap iterator, which iterates
over a red-black tree. The STL iterator code exploits parent pointers
stored in every node. For completeness, theTreeMap iterator was
also compared against a second C++ tree implementation, which
uses an internal stack of tree nodes to track iteration state.

The ArrayList andLinkedList iterators were compared to
the STLvector andlist iterators, respectively.

TheHashMap iterator uses both theArrayList andLinkedList
iterators. This was compared to thehash map iterator, found in the
Sun extensions to the STL and included in Linux libc++ 3.4.3.

Each benchmark program timed the execution of several runs of
each data iterator over collections of 50,000 and 250,000 elements.

The benchmarks were compiled usinggcc 3.4.3 and executed
on a Fedora Core 3 system. The STL iterators were compiled with
the-O2 flag to ensure a good baseline for comparing performance.

The code generated by the JMatch translation to C++ manipu-
lates the program stack in a non-standard way. As a result, some
of the optimizations made bygcc break the benchmark code; and
it was not possible to use the full suite of gcc optimizations on the
output from JMatch.

The Java iterator benchmarks were run using the Java 1.5
Hotspot JIT compiler.

Performance Results

The results in Table 2 demonstrate that JMatch iterators can be
translated to code that performs comparably to conventional iter-
ation techniques. JMatch iterators perform almost as well as STL
iterators in all cases (faster in the case of the HashMap test), with
the exception ofArrayList.

The discrepancy in performance between the JMatchTreeMap
iterator and that of the STL appears related to the inability to inline
the (recursive) JMatch iterator. By contrast, the JMatchHashMap
iterator performs about 15% faster than the STL iterator; this is
due to implementation choices made in the STL iterator’sadvance
function. Finally, the JMatchArrayList iterator is significantly
slower than that of the STL (though still much faster than Java)
because the STL iterator is just an element pointer directly manip-
ulated by the client code.

First-class iterator objects in JMatch are somewhat slower be-
cause iterator state is checkpointed, as discussed in Section 6.4,
and because iterator code can no longer be inlined. However, the
performance is probably still acceptable.

To determine the effectiveness of the tail-yield optimization, the
TreeMap implementation was translated to C++ with and without
the tail-yield optimization. The speedup from the tail-yield opti-
mization was a factor of four for both 50k and 250k elements.

8. Related work
CLU [L+81], ICON [GHK81], Python [vR03], Ruby [DTH04],
and C# 2.0 [HWG03] each support coroutine iterators whose use
and implementation are convenient; theyield statement of JMatch
was inspired by CLU. None of these iterator mechanisms, however,
support imperative updates.

Sather [MOSS96] extends the CLU iterator mechanisms to pro-
vide limited support for imperative update, through “hot argu-
ments” that can be used to transmit information to an iterator in
progress. This mechanism does not support invocation of update
requests (e.g.,remove) during a loop body. We are unaware of any
evaluation of the effectiveness of the Sather mechanism for com-
plex data structure manipulations during iteration.

Simula [Kir89], Modula-2 [Wir85] and BETA [MMPN93] sup-
port coroutines that can be used to implement iteration abstractions.

Alphard [SWL77] supports iteration throughgenerators, which
are essentially iterator (cursor) objects, and similarly difficult to
implement.

Cedar [Lam83] supports both termination- and resumption-style
exceptions, though not in the context of coroutines, and without
static checking.

Various languages have used logic programming to enable the
declarative implementation of a computation that produces mul-
tiple possible results; the best-known is Prolog [WPP77]. Mer-
cury is a good modern example; as in JMatch, predicates can have
several modes, a feature originating in some versions of Prolog
(e.g., [Gre87]). Although logic programming languages give the
ability to concisely express computations with multiple results, in
these languages iteration occurs only at top level; there is no way
to use the iteration within a larger program.

Other languages such as SML/NJ [SML], Scheme [KCe98],
and Ruby [DTH04] support first-class continuations, which can
be used to implement interruptible iterators and coroutines more
generally [HFW86].

9. Conclusions
Iteration abstraction is important and yet poorly supported by the
commonly used imperative object-oriented languages. Coroutine
iterators are concise, readable and can be implemented efficiently.
However, they do not support the full functionality desired by pro-
grammers, as evidenced by the JavaIterator interface. The prob-
lem of how to properly support iteration abstraction in imperative
languages has remained unsolved.

This work shows that imperative update operations such as the
Javaremove method can be accommodated in a coroutine itera-
tor framework, throughinterrupts, a new non-local control mech-
anism. Unlike Java iterators, the resulting iterators are composi-
tional. The same interrupt mechanism can be applied to iterators
implemented as declarative logical formulas, making code more
concise through modal abstraction.

Using JMatch to implement the most complex classes in the
Java Collections Framework has shown that interruptible iterators

lead to substantial improvements in code size and, arguably, clarity.
Measurements show that interruptible iterators have performance
comparable to other iterator techniques, because the implementa-
tion can exploit the LIFO allocation discipline of coroutine stacks.

The static and dynamic semantics of the current version of
JMatch have been formalized; the static checking of interrupts is
described in the appendix, and the evaluation of JMatch programs
has been described formally as a translation to Java [LM02]. These
results suggest that interruptible iterators offer a reasonable way to
solve the problem of implementing iterator abstractions.

A. Interrupt and trap checking
The following typing rules describe how interrupt checking is done
in JMatch. The goal is to ensure that every raised interrupt or
thrown trap exception is eventually handled, and that control is
returned properly to the client throughresume.

A.1 Notation
There are two judgments, for expressions and statements:

• Expressions:̀ e · : I, E

• Statements:̀ s · : I, E, U

I is the set of interrupts handled. This can be⊥ to indicate that
there is no yield point in the given expression or statement (and
hence no need to handle interrupts):

⊥ ∪ S = ⊥ ∩ S = S \ ⊥ = S

E = {(ej , ij)} is a conservative overapproximation of the set of
exceptions thrown, each tagged with the interrupt that caused it.
The interrupt tagij can benone if the exception is an ordinary one,
or unk if the cause of the exception is as yet undetermined.U is
the set of interrupts that have beenraised in an enclosed lexical
context, but not yet handled.

E|S = {(e, i) : (e, i) ∈ E andi ∈ S} filters a tagged exception
setE against a setS of interrupts.

E[τ 7→τ ′] =
S

(e,τ)∈E{(e, τ
′)} ∪

S
(e,i)∈E:i6=τ{(e, i)} updates

interrupt tags inE, remapping the tagτ to τ ′.
Set subtraction is extended to include subtypes:

E \ E′ = {(τ1, τ2) ∈ E | 6 ∃(τ ′1, τ ′2) ∈ E′. τ1 ≤ τ ′1 andτ2 ≤ τ ′2}

U \ U ′ = {τ ∈ U | 6 ∃τ ′ ∈ U ′. τ ≤ τ ′}

A.2 Method declarations
To ensure that every raised interrupt or thrown trap exception is
eventually handled, we verify that each iterative method mode ad-
heres to the method signature’s interrupt and trap exception dec-

larations. In a method that declares
−−−−−−−−−→
traps τi: τ ′i , each iterative

mode must satisfy:

• `e e : {−→τi }, {
−−→
τ ′i , τi}, where the mode is implemented with the

formulae; or else

• `s s : {−→τi }, {
−−→
τ ′i , τi}, ∅, where the mode is implemented with

the statements.

A.3 Formulas

`e false : ⊥, ∅
Conjunction:

`e ei : ⊥, ∅ `e ej : I, E

`e e1 && e2 : ⊥, ∅ {i, j} = {1, 2}

`e e1 : I1, E1 `e e2 : I2, E2

`e e1 && e2 : I1 ∪ I2, E1 ∪ E2
I1 6= ⊥; I2 6= ⊥; I1, I2 disjoint

Binary comparisons, assignments, and binary patterns:

`e e1 : I1, E1 `e e2 : I2, E2

`e e1 op e2 : I1 ∪ I2, E1 ∪ E2
I1, I2 disjoint

where:op ∈ {+,−, ∗, /, %, &, |, ^, =, ==, ! =, <, <=, >=, >, as}

Disjunction:

`e e1 : I1, E1 `e e2 : I2, E2

`e e1 op e2 : I1 ∩ I2, (E1 ∪ E2)|(I1∩I2)∪{none,unk}
op ∈ {||, else}

Constructor invocation:

`e ei : Ii, Ei

`e new τ(−→ei) :
[
i

Ii, (
[

τ ′∈E

(τ ′, unk)) ∪ (
[
i

Ei)

τ(−→τei) throws E
Ii disjoint

Method invocation:
`e ei : Ii, Ei

`e m(−→ei) : {−→τj} ∪ (
[
i

Ii), E

where:
E = (

S
τ∈E(τ, unk)) ∪ (

S
i Ei) ∪ (

S
j,τ∈Ej

{(τ, τj)})
iterative mode chosen form

m throws E traps
−−−−→
τj : Ej

Ii and{−→τj} disjoint

All other expressionse: `e e : ∅, ∅

A.4 Statements

`s yield : ∅, ∅, ∅
`e e : ⊥, E

`s raise e : ⊥, E, {τe}

`e e : ⊥, E

`s throw e : ⊥, E ∪ {(τe, unk)}, ∅

`e e : Ie, Ee `s s : Is, Es, Us

`s foreach (e) s :

Ie ∪ Is, Es ∪ (
[

(τ,τ ′)∈Ee,τ ′∈Us∪{unk,none}
{(τ, unk)}), Us \ Ie

Statement sequencing:

`s s1 : I1, E1, U1 `s s2 : I2, E2, U2

`s s1; s2 : I1 ∩ I2, (E1 ∪ E2)|(I1∩I2)∪{none,unk}, U1 ∪ U2

Try :
`s s : ⊥, E, U `s si : Ii, Ei, Ui

`s try {s}
−−−−−−−−−−→
catch (τi) {si} :

\
i

Ii, E, U ∪ (
[
i

Ui)

where:

E = E \ {
−−−−−→
(τi, unk),

−−−−−−→
(τi, none)} ∪ (

S
i Ei)|(T

i Ii)∪{none,unk}

`s s : I, E, U
`s si : Ii, Ei, Ui `s sj : Ij , Ej , Uj `s sk : Ik, Ek, Uk

`s try {s}
−−−−−−−−−→
trap (τi) {si}

−−−−−−−−−−−−−−−→
catch (trap τj) {sj}−−−−−−−−−−−→

catch (τk) {sk} : I, E,U
where:

I = (I ∪ {−→τi }) ∩ (
T

i Ii) ∩ (
T

j Ij) ∩ (
T

k Ik)

E = ((E \ {
−−−−−−−−→
(τj , Object),

−−−−−→
(τk, unk),

−−−−−−→
(τk, none)})

∪ (
S

i Ei[unk 7→τi]
)

∪ (
S

(τ,unk)∈Ej ,(τj ,τ ′)∈E{(τ, τ ′)})

∪ (
S

(τ,τ ′)∈Ej ,τ ′ 6=unk{(τ, τ ′)}) ∪ (
S

k Ek))|I
U = U ∪ (

S
i Ui) ∪ (

S
j Uj) ∪ (

S
k Uk)

Resume: The rules forresume break andresume continue are identi-
cal to the following rules forresume yield.

`s resume yield : ⊥, ∅, ∅

`s si : Ii, Ei, Ui

`s resume yield
−−−−−−−−−→
trap (τi) {si} :

{−→τi } ∩ (
\
i

Ii), (
[
i

(Ei[unk 7→τi]
))|{−→τi}∩(

T
i Ii)

,
[
i

Ui

All other statementss: `s s : ⊥, ∅, ∅

Acknowledgments
Steve Chong, Michael Clarkson, Nate Nystrom and Lantian Zheng gave
many useful comments on the presentation.

This research was supported in part by ONR Grant N00014-01-1-0968,
by NSF Grants 0208642, 0133302, and 0430161, and by an Alfred P. Sloan
Research Fellowship. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes, notwithstanding any copyright
annotation thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the
official policies or endorsement, either expressed or implied, of the fund-
ing agencies. Aaron Kimball was supported by an Engineering Learning
Initiatives grant funded by Intel.

References
[DTH04] Chad Fowler Dave Thomas and Andy Hunt.Programming

Ruby: The Pragmatic Programmers’ Guide. The Pragmatic
Programmers, 2nd edition, 2004. ISBN 0-974-51405-5.

[GHK81] Ralph E. Griswold, David R. Hanson, and John T. Korb.
Generators in ICON.ACM Transaction on Programming
Languages and Systems, 3(2), April 1981.

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.The
Java Language Specification. Addison Wesley, 2nd edition,
2000. ISBN 0-201-31008-2.

[Goo75] John B. Goodenough. Exception handling design issues.
SIGPLAN Notices, 10(7):41–45, 1975.

[GR04] Emden R. Gansner and John H. Reppy.The Standard ML
Basis Library. Cambridge University Press, October 2004.

[Gre87] Steven Gregory.Parallel Programming in PARLOG. Addison-
Wesley, 1987.

[HFW86] C. T. Haynes, D. P. Friedman, and M. Wand. Obtaining corou-
tines from continuations.Journal of Computer Languages,
11(3–4):143–153, 1986.

[HWG03] Anders Hejlsberg, Scott Wiltamuth, and Peter Golde.The
C# Programming Language. Addison-Wesley, 1st edition,
October 2003. ISBN 0321154916.

[KCe98] Richard Kelsey, William Clinger, and Jonathan Rees (editors).
Revised5 report on the algorithmic language Scheme.ACM
SIGPLAN Notices, 33(9):26–76, October 1998.

[Kir89] B. Kirkerud. Object-Oriented Programming with SIMULA.
Addison-Wesley, 1989.

[L+81] B. Liskov et al. CLU reference manual. In Goos and
Hartmanis, editors,Lecture Notes in Computer Science,
volume 114. Springer-Verlag, Berlin, 1981.

[Lam83] Butler Lampson. A description of the Cedar language: A
Cedar language reference manual. Technical Report CSL-83-
15, Xerox PARC, December 1983.

[LAS78] B. Liskov, R. Atkinson, and R. Scheifler. Aspects of
implementing CLU. InProceedings of the Annual Conference.
ACM, 1978.

[LM02] Jed Liu and Andrew C. Myers. JMatch: Java plus pattern
matching. Technical Report TR2002-1878, Computer Science
Department, Cornell University, October 2002. Software re-
lease athttp://www.cs.cornell.edu/projects/jmatch.

[LM03] Jed Liu and Andrew C. Myers. JMatch: Abstract iterable
pattern matching for Java. InProc. 5th Int’l Symp. on Practical
Aspects of Declarative Languages (PADL), pages 110–127,
New Orleans, LA, January 2003.

[LSAS77] B. Liskov, A. Snyder, R. Atkinson, and J. C. Schaffert.
Abstraction mechanisms in CLU.Comm. of the ACM,
20(8):564–576, August 1977. Also in S. Zdonik and D.
Maier, eds.,Readings in Object-Oriented Database Systems.

[MBL97] Andrew C. Myers, Joseph A. Bank, and Barbara Liskov.
Parameterized types for Java. InProc. 24th ACM Symp. on
Principles of Programming Languages (POPL), pages 132–
145, Paris, France, January 1997.

[MDS01] David R. Musser, Gillmer J. Derge, and Atul Saini.The STL
Tutorial and Reference Guide. Addison-Wesley, 2nd edition,
2001. ISBN 0-201-37923-6.

[Mic01] Microsoft Corporation.Microsoft C# Language Specifications.
Microsoft Press, 2001. ISBN 0-7356-1448-2.

[MLM98] Andrew C. Myers, Barbara Liskov, and Nicholas Mathewson.
PolyJ: Parameterized types for Java. Software release, at
http://www.cs.cornell.edu/polyj, July 1998.

[MMPN93] O. Lehrmann Madsen, B. Møller-Pedersen, and K. Nygaard.
Object Oriented Programming in the BETA Programming
Language. Addison-Wesley, June 1993.

[MOSS96] Stephan Murer, Stephen Omohundro, David Stoutamire, and
Clemens Szyperski. Iteration abstraction in Sather.ACM
Transactions on Programming Languages and Systems,
18(1):1–15, January 1996.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper.The Definition
of Standard ML. MIT Press, Cambridge, MA, 1990.

[NCM03] Nathaniel Nystrom, Michael Clarkson, and Andrew C. Myers.
Polyglot: An extensible compiler framework for Java. In Görel
Hedin, editor,Compiler Construction, 12th International
Conference, CC 2003, number 2622 in Lecture Notes in
Computer Science, pages 138–152, Warsaw, Poland, April
2003. Springer-Verlag.

[SML] The SML/NJ Fellowship. Standard ML of New Jersey.
http://www.smlnj.org/.

[Str87] B. Stroustrup.The C++ Programming Language. Addison-
Wesley, 1987.

[Sun04] Sun Microsystems.JDK 5 Java Language Documentation,
2004. http://java.sun.com/j2se/1.5.0/docs/guide/language.

[SWL77] M. Shaw, W. Wulf, and R. London. Abstraction and
verification in Alphard: Defining and specifying iteration
and generators.Comm. of the ACM, 20(8), August 1977.

[vR03] Guido van Rossum.The Python Language Reference Manual.
Network Theory, Ltd., September 2003.

[Wir85] Niklaus Wirth. Programming in Modula-2. Springer Verlag,
Berlin, 3rd edition, 1985.

[WPP77] David H. D. Warren, Luis M. Pereira, and Fernando Pereira.
Prolog—the language and its implementation compared with
Lisp. In Proc. 1977 Symposium on Artificial Intelligence and
Programming Languages, pages 109–115, 1977.

