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Abstract. The JMatch language extends Java withiterable abstract pattern match-
ing, pattern matching that is compatible with the data abstraction features of Java
and makes iteration abstractions convenient. JMatch has ML-style deep pattern
matching, but patterns can be abstract; they are not tied to algebraic data con-
structors. A single JMatch method may be used in several modes; modes may
share a single implementation as a boolean formula. Modal abstraction simplifies
specification and implementation of abstract data types. This paper describes the
JMatch language and its implementation.

1 Introduction

Object-oriented languages have become a dominant programming paradigm, yet they
still lack features considered useful in other languages. Functional languages offer
expressive pattern matching. Logic programming languages provide powerful mech-
anisms for iteration and backtracking. However, these useful features interact poorly
with the data abstraction mechanisms central to object-oriented languages. Thus, ex-
pressing some computations is awkward in object-oriented languages.

In this paper we present the design and implementation of JMatch, a new object-
oriented language that extends Java [GJS96] with support foriterable abstract pattern
matching—a mechanism for pattern matching that is compatible with the data abstrac-
tion features of Java and that makes iteration abstractions more convenient. This mech-
anism subsumes several important language features:

– convenient use and implementation of iteration abstractions (as in CLU [L+81],
ICON [GHK81], and Sather [MOSS96].)

– convenient run-time type discrimination without casts (for example, Modula-3’s
typecase [Nel91])

– deep pattern matching allows concise, readable deconstruction of complex data
structures (as in ML [MTH90], Haskell [Jon99] and Cyclone [JMG+02].)

– multiple return values
– views [Wad87]
– patterns usable as first-class values [PGPN96,FB97]
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JMatch exploits two key ideas:modal abstractionandinvertible computation. Modal
abstraction simplifies thespecification(and use) of abstractions; invertible computation
simplifies theimplementationof abstractions.

JMatch constructors and methods may be modal abstractions: operations that sup-
port multiplemodes[SHC96]. Modes correspond to different directions of computa-
tion, where the ordinary direction of computation is the “forward” mode, but backward
modes may exist that compute some or all of a method’s arguments using an expected
result. Pattern matching uses a backward mode. A mode may specify that there can be
multiple values for the method outputs; these can be easily iterated over in a predictable
order. Modal abstraction simplifies the specification and use of abstract data type (ADT)
interfaces, because where an ADT would ordinarily have several distinct but related op-
erations, in JMatch it is often natural to have a single operation with multiple modes.

The other key idea behind JMatch is invertible computation. Computations may be
described by boolean formulas that express the relationship among method inputs and
outputs. Thus, a single formula may implement multiple modes; the JMatch compiler
automatically decides for each mode how to generate the outputs of that mode from the
inputs. Each mode corresponds to a different direction of evaluation. Having a single
implementation helps ensure that the modes implement the abstraction in a consistent
manner, satisfying expected equational relationships.

These ideas appear in various logic programming languages, but it is a challenge
to integrate these ideas into an object-oriented language in a natural way that enforces
data abstraction, preserves backwards compatibility, and permits an efficient implemen-
tation. JMatch is not a general-purpose logic-programming language; it does not pro-
vide the full power of unification over logic variables. This choice facilitates an efficient
implementation. However, JMatch does provide more expressive pattern matching than
logic-programming, along with modal abstractions that are first-class values (objects).

Although JMatch extends Java, little in this paper is specific to Java. The ideas in
JMatch could easily be applied to other garbage-collected object-oriented languages
such as C# [Mic01] or Modula-3 [Nel91].

A prototype compiler for JMatch is available for download. It is built using the Poly-
glot extensible Java compiler framework [NCM02], which supports source-to-source
translation into Java.

The rest of this paper is structured as follows. Section 2 provides an overview of the
JMatch programming language. Section 3 gives examples of common programming
idioms that JMatch supports clearly and concisely. Section 4 describes the implementa-
tion of the prototype compiler. Section 5 discusses related work. Section 6 summarizes
and concludes with a discussion of useful extensions to JMatch.

2 Overview of JMatch

JMatch provides convenient specification and implementation of computations that may
be evaluated in more than one direction, by extending expressions toformulasandpat-
terns. Named abstractions can be defined for formulas and patterns; these abstractions
are calledpredicate methods, pattern methods, andpattern constructors. JMatch ex-



tends the meaning of some existing Java statements and expressions, and adds some
new forms. It is backwards compatible with Java.

2.1 Formulas

Syntactically, a JMatch formula is similar to a Java expression of boolean type, but
where a Java expression would permit a subexpression of typeT , a formula may include
a variable declaration with typeT . For example, the expression2 + int x == 5 is a
formula that is satisfied whenx is bound to3.

JMatch has alet statement that tries to satisfy a formula, binding new variables as
necessary. For example, the statementlet 2 + int x == 5; causesx to be bound to
3 in subsequent code (unless it is later reassigned). If there is no satisfying assignment,
an exception is raised. To prevent an exception, anif statement may be used instead.
The conditional may be any formula with at most one solution. If there is a satisfying
assignment, it is in scope in the “then” clause; if there is no satisfying assignment,
the “else” clause is executed but the declared variables are not in scope. For example,
the following code assignsy to an array index such thata[y] is nonzero (thesingle
restricts it to the first such array index), or to-1 if there is no such index:

int y;
if (single(a[int i] != 0)) y = i;
else y = -1;

A formula may contain free variables in addition to the variables it declares. The for-
mula expresses a relation among its various variables; in general it can be evaluated in
several modes. For a given mode of evaluation these variables are eitherknownsor un-
knowns. In theforward mode, all variables, including bound variables, are knowns, and
the formula is evaluated as a boolean expression. In backward modes, some variables
are unknowns and satisfying assignments are sought for them. If JMatch can construct
an algorithm to find satisfying assignments given a particular set of knowns, the for-
mula issolvablein that mode. A formula with no satisfying assignments is considered
solvable as long as JMatch can construct an algorithm to determine this.

For example, the formulaa[i] == 0 is solvable if the variablei is an unknown,
but not if the variablea is an unknown. The modes of the array index operator[ ] do
not include any that solve for the array, because those modes would be largely useless
(and inefficient).

Some formulas have multiple satisfying assignments; the JMatchforeach state-
ment can be used to iterate through these assignments. For example, the following code
adds the indices of all the non-zero elements of an array:

foreach(a[int i] != 0) n += i;

In formulas, the single equals sign (=) is overloaded to mean equality rather than
assignment, while preserving backwards compatibility with Java. The symbol= cor-
responds to semantic equality in Java (that is, theequals method of classObject).
Formulas may use either pointer equality (==) or semantic equality (=); the difference
between the two is observable only when an equation is evaluated in forward mode,



where the Javaequals method is used to evaluate=. Otherwise an equation is satis-
fied by making one side of the equation pointer-equal to the other—and therefore also
semantically equal. Because semantic equality is usually the right choice for JMatch
programs, concise syntax is important. The other Java meanings for the symbol= are
initialization and assignment, which can be thought of as ways to satisfy an equation.

2.2 Patterns

A pattern is a Java expression of non-boolean type except that it may contain vari-
able declarations, just like a formula. In its forward mode, in which all its variables are
knowns, a pattern is evaluated directly as the corresponding Java expression. In its back-
ward modes, the value of the pattern is a known, and this value is used to reconstruct
some or all of the variables used in the pattern. In the example above, the subexpression
2 + int x is a pattern with typeint, and given that its value is known to be5, JMatch
can determinex = 3. Inversion of addition is possible because the addition operator
supports the necessary computational mode; not all binary operators support this mode.
Another pattern is the expressiona[int i]. Given a valuev to match against, this
pattern iterates over the arraya finding all indicesi such thatv = a[i]. There may
be many assignments that make a pattern equal to the matched value. When JMatch
knows how to find such assignments, the pattern ismatchablein that mode. A patternp
is matchable if the equationp = v is solvable for any valuev.

The Javaswitch statement is extended to support general pattern matching. Each
of the case arms of aswitch statement may provide a pattern; the first arm whose
pattern matches the tested value is executed.

The simplest pattern is a variable name. If the type checker cannot statically deter-
mine that the value being matched against a variable has the same type, a dynamic type
test is inserted and the pattern is matched only if the test succeeds. Thus, atypecase
statement [Nel91] can be concisely expressed as aswitch statement:

Vehicle v; ...
switch (v) {

case Car c: ...
case Truck t: ...
case Airplane a: ...

}

For the purpose of pattern matching there is no difference between a variable decla-
ration and a variable by itself; however, the first use of the variable must be a declaration.

2.3 Pattern constructors

One way to define new patterns ispattern constructors, which support conventional
pattern matching, with some increase in expressiveness. For example, a simple linked
list (a “cons cell”, really) naturally accommodates a pattern constructor:



public class List implements Collection {
Object head;
List tail;
public List(Object h, List t) returns(h, t) (

head = h && tail = t
)
...

}

This constructor differs in two ways from the corresponding Java constructor whose
body would read{head = h; tail = t; }. First, the mode clausereturns(h,t)
indicates that in addition to the implicit forward mode in which the constructor makes a
new object, the constructor also supports a mode in which the result object is a known
and the argumentsh andt are unknowns. It is this backward mode that is used for
pattern matching. Second, the body of the constructor is a simple formula (surrounded
by parentheses rather than by braces) that implements both modes at once. Satisfying
assignments tohead andtail will build the object; satisfying assignments toh andt
will deconstruct it.

For example, this pattern constructor can be applied in ways that will be familiar to
ML programmers:

List l;
...
switch (l) {

case List(Integer x, List(Integer y, List rest)): ...
default: ...

}

The switch statement extracts the first two elements of the list into variablesx and
y and executes the subsequent statements. The variablerest is bound to the rest of
the list. If the list contains zero or one elements, thedefault case executes with no
additional variables in scope. Even for this simple example, the equivalent Java code is
awkward and less clear. In the code shown, the constructor invocations do not use the
new keyword; the use ofnew is optional.

TheList pattern constructor also matches against subclasses ofList; in that case
it inverts the construction of only theList part of the object.

It is also possible to match several values simultaneously:

List l1, l2; ...
switch (l1, l2) {

case List(Object x, List(Integer y,List r)), List(y, _): ...
default: ...

}

The first case executes if the listl1 has at least two elements, and the head of listl2
exists and is anInteger equal to the second element ofl1. The remainder ofl2 is
matched using the wildcard pattern “_”.



In this example of a pattern constructor, the constructor arguments and the fields
correspond directly, but this need not be the case. More complex formulas can be used
to implement views as proposed by Wadler [Wad87] (see Section 3.4).

The example above implements the constructor using a formula, but backwards
compatibility is maintained; a constructor can be written using the usual Java syntax.

2.4 Methods and modal abstraction

The language features described so far subsume ML pattern matching, with the added
power of invertible boolean formulas. JMatch goes further; pattern matching coexists
with abstract data types and subtyping, and it supports iteration.

Methods withboolean return type arepredicate methodsthat define a named ab-
straction for a boolean formula. The forward mode of a predicate method expects that
all arguments are known and executes the method normally. In backward modes, sat-
isfying assignments to some or all of the method arguments are sought. Assuming that
the various method modes are implemented consistently, the corresponding forward
invocation using these satisfying assignments would have the resulttrue.

Predicate methods with multiple modes can make ADT specifications more concise.
For example, in the Java Collections framework theCollection interface declares sep-
arate methods for finding all elements and for checking if a given object is an element:

boolean contains(Object o);
Iterator iterator();

In any correct Java implementation, there is an equational relationship between the
two operations: any objectx produced by the iterator object satisfiescontains(x),
and any object satisfyingcontains(x) is eventually generated by the iterator. When
writing the specification forCollection, the specifier must describe this relationship
so implementers can do their job correctly.

By contrast, a JMatch interface can describe both operations with one declaration:

boolean contains(Object o) iterates(o);

This declaration specifies two modes: an implicit forward mode in which membership is
being tested for a particular objecto, and a backward mode declared byiterates(o),
which iterates over all contained objects. The equational relationship is captured simply
by the fact that these are modes of the same method.

An interface method signature may declare zero or more additional modes that the
method implements, beyond the default, forward mode. A modereturns(x1, . . . , xn),
wherex1, . . . , xn are argument variable names, declares a mode that generates a satis-
fying assignment for the named variables. A modeiterates(x1, . . . , xn) means that
the method iterates over asetof satisfying assignments to the named variables.

Invocations of predicate methods may appear in formulas. The following code it-
erates over the Collectionc, finding all elements that are lists whose first element is a
green truck; the loop body executes once for each element, with the variablet bound to
theTruck object.

foreach (c.contains(List(Truck t, _)) && t.color() = GREEN)
System.out.println(t.model());



2.5 Implementing methods

A linked list is a simple way to implement theCollection interface. Consider the
linked list example again, where thecontains method is no longer elided:

public class List implements Collection {
Object head; List tail;
public List(Object h, List t) returns(h, t) ...
public boolean contains(Object o) iterates(o) (

o = head || tail.contains(o)
)

}

As with constructors, multiple modes of a method may be implemented by a for-
mula instead of a Java statement block. Here, the formula implements both modes of
contains. In the forward mode there are no unknowns; in the backward mode the only
unknown iso, as the clauseiterates(o) indicates.

In the backward mode, the disjunction signals the presence of iteration. The two
subformulas separated by|| define two different ways to satisfy the formula; both will
be explored to find satisfying assignments foro.

The modes of a method may be implemented by separate formulas or by ordinary
Java statements, which is useful when no single boolean formula is solvable for all
modes, or it leads to inefficient code. For example, the following code separately im-
plements the two modes ofcontains:

public boolean contains(Object o) {
if (o.equals(head)) return true;
return tail.contains(o);

} iterates(o) {
o = head;
yield;
foreach (tail.contains(Object tmp)) {

o = tmp;
yield;

}
}

For backward modes, results are returned from the method by theyield statement
rather than byreturn. Theyield statement transfers control back to the iterating con-
text, passing the current values of the unknowns. While this code is longer and no faster
than the formula above, it is simpler than the code of the corresponding Java iterator
object. The reason is that iterator objects must capture the state of iteration so they can
restart the iteration computation whenever a new value is requested. In this example, the
state of the iteration is implicitly captured by the position of theyield statement and
the local variables; restarting the iteration is automatic. In essence, iteration requires
the expressive power of coroutines [Con63,L+81,GHK81]. Implementing iterator ob-
jects requires coding in continuation-passing style (CPS) to obtain this power [HFW86],



which is awkward and error-prone [MOSS96]. The JMatch implementation performs a
CPS conversion behind the scenes.

2.6 Pattern methods

d

c

b

interface Tree {

Tree node(Tree l, Tree r, Object o)

returns(l, r, o);

Tree empty();

}

Tree a = ...;

...

switch (a) {

case Tree.node(

Tree.node(Tree b,

Tree.node(Tree c,

Tree.empty())),

Tree d):

...

}

class RBNode implements Tree {

RBNode lf, rg;

int color; // RED or BLACK
Object value;

Tree node(Tree l, Tree r)

( false ) // forward mode
returns (l, r) (

l = lf &&

r = rg

)

Tree empty() returns()

( false ) // both modes
...

}

class RBEmpty implements Tree {

static Tree empty = RBEmpty();

Tree node(Tree l, Tree r)

returns (l, r)

( false ) // both modes
Tree empty()

returns() ( result = empty )

...

}

(specification and use) (implementation)

Fig. 1.Deep abstract pattern matching

JMatch methods whose return type is not boolean arepattern methodswhose result
may be matched against other values if the appropriate mode is implemented. Pattern
methods provide the ability to deconstruct values even more abstractly than pattern
constructors do, because a pattern method declared in an interface can be implemented
in different ways in the classes that implement the interface.

For example, many data structure libraries contain several implementations of trees
(e.g., binary search trees, red-black trees, AVL trees). When writing a generic tree-
walking algorithm it may be useful to pattern-match on tree nodes to extract left and
right children, perhaps deep in the tree. This would not be possible in most languages
with pattern matching (such as ML or Haskell) because patterns are built from construc-
tors, and thus cannot apply to different types. An abstract data type is implemented in



these languages by hiding the actual type of the ADT values; however, this prevents any
pattern matching from being performed on the ADT values. Thus, pattern matching is
typically incompatible with data abstraction.

By contrast, in JMatch it is possible to declare pattern methods in an interface such
as theTree interface shown on the left side of Figure 1. As shown in the figure, these
pattern methods can then be used to match the structure of the tree, without knowledge
of the actualTree implementation being matched.

An implementation of the pattern methodsnode andempty for a red-black tree is
shown on the right side of Figure 1. Here there are two classes implementing red-black
trees. For efficiency there is only one instance of the empty class, calledempty. The
node andempty pattern methods are only intended to be invoked in the backwards
mode for pattern-matching purposes. Thus, the ordinary forward mode is implemented
by the unsatisfiable formulafalse.

As this example suggests, the rule for resolving method invocations is slightly dif-
ferent for JMatch. A non-static pattern methodm of classT can be invoked using the
syntaxT.m, in which case the receiver of the method is the object being matched.
JMatch has a pattern operatoras; the pattern (P1 as P2) matches a value if bothP1 and
P2 match it. A patternT.m() is syntactic sugar for the pattern(T y as y.m())
wherey is fresh.

Within a pattern method there is a special variableresult that represents the result
of the method call. Mode declarations may mentionresult to indicate that the result
of the method call is an unknown. In the default, forward mode the only unknown is
the variableresult. During the method calls shown in Figure 1, the variableresult
will be bound to the same object as the method receiverthis. This need not be true
if the pattern method is invoked on some object other than the result—which allows
the receiver object to be used as a first-class pattern. (The expressionthis is always a
known in non-static methods.)

class List {

Object head; List tail;

static List append(List prefix, Object last) returns(prefix, last) (

prefix = null && // single element
result = List(last, null)

else // multiple elements
prefix = List(Object head, List ptail) &&

result = List(head, append(ptail, last))

)

}

List l; ...

switch(l) {

case List.append(List.append(_, Object o1), Object o2): ...

}

Fig. 2.Reversible list append



Figure 2 shows an example of a static pattern method;append appends an element
to the list in the forward direction but inverts this operation in the backward direction,
splitting a list into its last element and a prefix list. In this version ofList, empty lists
are represented bynull. The append method is static so that it can be invoked on
empty lists. Theswitch statement shows that pattern matching can extract the last two
elements of a list.

This example uses a disjunctive logical connective,else, which behaves like||
except that the right-hand disjunct generates solutions only if the left-hand disjunct has
not. An else disjunction does not by itself generate multiple solutions in backward
modes; bothelse and|| are short-circuit operators in the forward mode where the
proposed solution to the formula is already known.

This example also demonstrates reordering of conjuncts in different modes. The al-
gorithm for ordering conjuncts is simple: JMatch solves one conjunct at a time, and
always picks the leftmost solvable conjunct to work on. This rule makes the order of
evaluation easy to predict, which is important if conjuncts have side effects. While
JMatch tends to encourage a functional programming style, it does not attempt to guar-
antee that formulas are free of side-effects, because side-effects are often useful.

In this example, in the backward mode the first conjunct is not initially solvable, so
the conjuncts are evaluated in reverse order—in the multiple-element case,result is
first broken into its parts, then the prefix of its tail is extracted (recursively using the
append method), and finally the new prefix is constructed.

Pattern methods and pattern constructors obey similar rules; the main difference
is that whenresult is an unknown in a pattern constructor, the variableresult is
automatically bound to a new object of the appropriate type, and its fields are exposed
as variables to be solved. The list-reversal example shows that pattern methods can
construct and deconstruct objects too.

2.7 Built-in patterns

Many of the built-in Java operators are extended in JMatch to support additional modes.
As mentioned earlier, the array index operator[] supports new modes that are easy to
specify if we consider the operator on the typeT[] (array ofT) as a method named
operator[] after the C++ idiom:

static T operator[](T[] array, int index)
iterates(index, result)

That is, an array has the ability to automatically iterate over its indices and provide the
associated elements. Note that other than the convenient syntax of array indexing and
the type parameterization that arrays provide, there is no special magic here; it is easy
to write code using theyield statement to implement this signature, as well as for the
other built-in extensions.

The arithmetic operations+ and- are also able to solve for either of their arguments
given the result. In Java, the operator+ also concatenates strings. In JMatch the concate-
nation can be inverted to match prefixes or suffixes; all possible matching prefix/suffix
pairs can also be iterated over.



Within formulas, relational expressions are extended to support a chain of relational
comparisons. Certain integer inequalities are treated as built-in iterators: formulas of
the form (a1 ρ1 a2 ρ2 . . . ρn−1 an), wherea1 andan are solvable, and all of theρi

are either< or <= (or else all> or >=). These formulas are solved by iteration over
the appropriate range of integers betweena1 andan. For example, the following two
statements are equivalent except that the first evaluatesa.length only once:

foreach (0 <= int i < a.length) { ... }
for (int i = 0; i < a.length; i++) { ... }

2.8 Iterator objects

Java programmers are accustomed to performing iterations using objects that imple-
ment theIterator interface. AnIterator is an object that acts like an input stream,
delivering the next object in the iteration whenever itsnext() method is called. The
hasNext() method can be used to test whether there is a next object.

Iterator objects are usually unnecessary in JMatch, but they are easy to create. Any
formulaF can be converted into a corresponding iterator object using the special ex-
pression syntaxiterate C(F). Given a formula with unknownsx1, . . . , xn, the ex-
pression produces an iterator object that can be used to iterate over the possible solutions
to the formula. Each time thenext() method of the iterator is called, a container object
of classC is returned that has public fields namedx1, . . . , xn bound to the correspond-
ing solution values.

Iterator objects in Java sometimes implement aremove method that removes the
current element from the collection. Iterators with the ability to remove elements can
be implemented by returning the (abstract) context in which the element occurs. This
approach complicates the implementation of the iterator and changes its signature. Bet-
ter support for such iterators remains future work.

2.9 Exceptions

The implementation of forward modes by boolean formulas raises the question of what
value is returned when the formula is unsatisfiable. TheNoSuchElementException
exception is raised in that case.

Methods implemented as formulas do not have the ability to catch exceptions raised
during their evaluation; a raised exception propagates out from the formula to the con-
text using it. If there is a need to catch exceptions, the method must be implemented as
a statement block instead.

In accordance with the expectations of Java programmers, exceptions raised in the
body of aforeach iteration cannot be intercepted by the code of the predicate being
tested.

3 Examples

A few more detailed examples will suggest the added expressive power of JMatch.



3.1 Functional red-black trees

A good example of the power of pattern matching is the code for recursively balancing
a red-black tree on insertion. Cormen et al. [CLR90] present pseudocode for red-black
tree insertion that takes 31 lines of code yet gives only two of the four cases neces-
sary. Okasaki [Oka98a] shows that for functional red-black trees, pattern matching can
reduce the code size considerably. The same code can be written in JMatch about as
concisely. Figure 3 shows the key code that balances the tree. The four cases of the
red-black rotation are handled by four cases of theswitch statement that share a single
return statement, which is permitted because they solve for the same variables (a–d,
x–z).

static Node balance(int color, int value, RBTree left, RBTree right) {

if (color == BLACK) {

switch (value, left, right) {

case int z,

Node(RED, int y, Node(RED,int x,RBTree a,RBTree b), RBTree c),

RBTree d:

case z, Node(RED,x,a,Node(RED,y,b,c)), d:

case x, c, Node(RED,z,Node(RED,y,a,b),d):

case x, a, Node(RED,y,b,Node(RED,z,c,d)):

return Node(RED,y,Node(BLACK,x,a,b), Node(BLACK,z,c,d));

}

}

return new Node(color, value, left, right);

}

Fig. 3.Balancing red-black trees

3.2 Binary search tree membership

Earlier we saw that for lists, both modes of thecontainsmethod could be implemented
as a single, concise formula. The same is true for red-black trees:

public boolean contains(int x) iterates(x) (

left != null && x < value && left.contains(x) ||

x = value ||

right != null && x > value && right.contains(x)

)

In its forward mode, this code implements the usualO(log n) binary search for
the element. In its backward mode, it iterates over the elements of the red-black tree
in ascending order, and the testsx < value andx > value superfluously check the
data-structure invariant. Automatic removal of such checks is future work.



3.3 Hash table membership

The hash table is another collection implementation that benefits in JMatch. Here is the
contains method, with three modes implemented by a single formula:

class HashMap {

HashBucket[] buckets;

int size;

...

public boolean contains(Object key, Object value)

returns(value) iterates(key, value) (

int n = key.hashCode() % size &&

HashBucket b = buckets[n] &&

b.contains(key, value)

)

}

In the forward mode, the code checks whether the (key,value) binding is present in
the hash table. In the second mode, a key is provided and a value efficiently located if
available. The final mode iterates over all (key,value) pairs in the table. The hash table
has chained buckets (HashBucket) that implementcontains similarly to the earlier
List implementation. In the final, iterative mode, the built-in array iterator generates
the individual bucketsb; the checkn = hash(key) becomes a final consistency check
on the data structure, because it cannot be evaluated untilkey is known.

The signature of the methodHashBucket.contains is the same as the signa-
ture of HashMap.contains, which is not surprising because they both implement
maps. The various modes ofHashMap.contains use the corresponding modes of
HashBucket.contains and different modes of the built-in array index operator. This
coding style is typical in JMatch.

A comparison to the standard Java collection classHashMap [GJS96] suggests that
modal abstraction can substantially simplify class signatures. Thecontains method
provides the functionality of methodsget, iterator, containsKey, containsValue,
and to a lesser extent the methodskeySet andvalues.

3.4 Simulating views

Wadler has proposed views [Wad87] as a mechanism for reconciling data abstraction
and pattern matching. For example, he shows that the abstract data type of Peano natural
numbers can be implemented using integers, yet still provide the ability to pattern-
match on its values. Figure 4 shows the equivalent JMatch code. Wadler also gives an
example of a view of lists that corresponds to the modes of the methodappend shown
in Section 2.6.

In both cases, the JMatch version of the code offers the advantage that the forward
and backwards directions of the view are implemented by a single formula, ensuring
consistency. In the views version of this code, separatein andout functions must be
defined and it is up to the programmer to ensure that they are inverses.



class Peano {

private int n;

private Peano(int m) returns(m) ( m = n )

public Peano succ(Peano pred) returns(pred) (

pred = Peano(int m) && result = Peano(m+1)

)

public Peano zero() returns() ( result = Peano(0) )

}

Fig. 4.Peano natural numbers ADT

4 Semantics and Implementation

We now touch on some of the more interesting details of the semantics of JMatch and
its implementation. The JMatch compiler is built using the Polyglot compiler frame-
work for Java language extensions [NCM02]. Polyglot supports both the definition of
languages that extend Java and their translation into Java. For more details see the tech-
nical report on JMatch and the implementation notes available with the current version
of the compiler [LM02].

4.1 Static semantics

Type-checking JMatch expressions, including formulas and patterns, is little different
from type-checking Java expressions, since the types are the same in all modes, and the
forward mode corresponds to ordinary Java evaluation.

The Java interface and abstract class conformance rules are extended in a natural
way to handle method modes: a JMatch class must implement all the methods in all their
modes, as declared in the interface or abstract class being implemented or extended. A
method can add new modes to those defined by the super class.

The introduction of modes does create a new obligation for static checking. In
JMatch it is a static error to use a formula or pattern with multiple solutions in a context
(such as alet) where a single solution is expected, because solutions might be silently
discarded. Thus, the JMatch type system is extended so that every expression has a
multiplicity in addition to its ordinary Java type. Thesingle operator may be used to
explicitly discard the extra solutions of an expression and reduce its static multiplicity.

For each invocation of a built-in or user-defined predicate or pattern method, the
compiler must select a mode to use to solve the expression in which the invocation
appears. There may be more than one usable mode; the compiler selects the best mode
according to a simple ordering. Modes are considered better if (in order of priority)
they are not iterative, if they avoid constructing new objects, if they solve for fewer
arguments, and if they are declared earlier.

One change to type checking is in the treatment of pattern method invocations.
When a non-static method is invoked with the syntaxT.m, it is a pattern method invo-
cation of methodm of typeT . It would be appealing to avoid namingT explicitly but
this would require type inference.



4.2 Translation to Java

In the current implementation, JMatch is translated into Java by way of an intermediate
language called Javayield, which is the Java 1.4 language extended with a limitedyield
statement that can only be used to implement Java iterator objects. Executingyield
causes the iterator to return control to the calling context. The iterator object constructor
and the methodsnext andhasNext are automatically implemented in Javayield. Each
subsequent invocation ofnext on the iterator returns control to the point just after the
execution of the previousyield statement.

The benefit of the intermediate language is that the translation from JMatch to
Javayield is straightforwardly defined using a few mutually inductively defined syntax-
directed functions. The translation from Javayield to Java 1.4 is also straighforward; it
is essentially a conversion to continuation-passing style. While the performance of the
translated code is acceptable, several easy optimizations would improve code quality.
See the technical report [LM02] for more details on the translation.

5 Related Work

Prolog is the best-known declarative logic programming language. It and many of its
descendents have powerful unification in which a predicate can be applied to an ex-
pression containing unsolved variables. JMatch lacks this capability because it is not
targeted specifically at logic programming tasks; rather, it is intended to smoothly in-
corporate some expressive features of logic programming into a language supporting
data abstraction and imperative programming.

ML [MTH90] and Haskell [HJW92,Jon99] are well-known functional program-
ming languages that support pattern matching, though patterns are tightly bound to the
concrete representation of the value being matched. Because pattern matching in these
languages requires access to the concrete representation, it does not coexist well with
the data abstraction mechanisms of these languages. However, an advantage of con-
crete pattern matching is the simplicity of analyzingexhaustiveness; that is, showing
that some arm of aswitch statement will match.

Pattern matching has been of continuing interest to the Haskell community. Wadler’s
views [Wad87] support pattern matching for abstract data types. Views correspond to
JMatch constructors, but require the explicit definition of a bijection between the ab-
stract view and the concrete representation. While bijections can be defined in JMatch,
often they can be generated automatically from a boolean formula. Views do not pro-
vide iteration.

Burton and Cameron [BC93] have also extended the views approach with a focus on
improving equational reasoning. Fähndrich and Boyland [FB97] introduced first-class
pattern abstractions for Haskell, but do not address the data abstraction problem. Palao
Gonstanza et al. [PGPN96] describe first-class patterns for Haskell that work with data
abstraction, but are not statically checkable. Okasaki has proposed integrating views
into Standard ML [Oka98b]. Tullsen [Tul00] shows how to use combinators to construct
first-class patterns that can be used with data abstraction. Like views, these proposals
do not provide iterative patterns, modal abstraction, or invertible computation.



A few languages have been proposed to integrate functional programming and logic
programming [Han97,Llo99,CL00]. The focus in that work is on allowing partially
instantiated values to be used as arguments, rather than on data abstraction.

In the language Alma-0, Apt et al. [ABPS98] have augmented Modula-2, an im-
perative language, with logic-programming features. Alma-0 is tailored for solving
search problems and unlike JMatch, provides convenient backtracking through impera-
tive code. However, Alma-0 does not support pattern matching or data abstraction.

Mercury [SHC96] is a modern declarative logic-programming language with mod-
ularity and separate compilation. As in JMatch, Mercury predicates can have several
modes, a feature originating in some versions of Prolog (e.g., [Gre87]). Modal abstrac-
tions are not first-class in Mercury; a single mode of a predicate can be used as a first-
class function value, but unlike in JMatch, there is no way to pass several such modes
around as an object and use them to uniformly implement another modal abstraction.
Mercury does not support objects.

CLU [L+81], ICON [GHK81], and Sather [MOSS96] each support iterators whose
use and implementation are both convenient; theyield statement of JMatch was in-
spired by CLU. None of these languages have pattern matching.

Pizza also extends Java by allowing a class to be implemented as an algebraic
datatypes and by supporting ML-style pattern matching [OW97]. Because the datatype
is not exposed outside the class, Pizza does not permit abstract pattern matching. Forax
and Roussel have also proposed a Java extension for simple pattern matching based on
reflection [FR99].

Ernst et al. [EKC98] have developed predicate dispatching, another way to add pat-
tern matching to an object-oriented language. In their language, boolean formulas con-
trol the dispatch mechanism, which supports encoding some pattern-matching idioms
although deep pattern matching is not supported. This approach is complementary to
JMatch, in which object dispatch is orthogonal to pattern matching. Their language has
limited predicate abstractions that can implement a single new view of an object, but
unlike JMatch, it does not unify predicates and methods. The predicates may not be
recursive or iterative and do not support modal abstraction or invertible computation.

6 Conclusions

JMatch extends Java with the ability to describe modal abstractions: abstractions that
can be invoked in multiple different modes, or directions of computation. Modal ab-
stractions can result in simpler code specifications and more readable code through the
use of pattern matching. These modal abstractions can be implemented using invertible
boolean formulas that directly describe the relation that the abstraction computes. In
its forward mode, this relation is a function; in its backward modes it may be one-to-
many or many-to-many. JMatch provides mechanisms for conveniently exploring this
multiplicity.

JMatch is backwards compatible with Java, but provides expressive new features
that make certain kinds of programs simpler and clearer. While for some such programs,
using a domain-specific language would be the right choice, having more features in a



general-purpose programming language is handy because a single language can be used
when building large systems that cross several domains.

A prototype of the JMatch compiler has been released for public experimentation,
and improvements to this implementation are continuing.

There are several important directions in which the JMatch language could be use-
fully extended. An exhaustiveness analysis for switch statements andelse disjunctions
would make it easier to reason about program correctness. Automatic elimination of
tests that are redundant in a particular mode might improve performance. And support
for iterators with removal would be useful.
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